精英家教网 > 高中数学 > 题目详情
如图,在三棱锥P-ABC中,PB⊥面ABC,∠ABC=90°,AB=BC=2,∠PAB=45°,点D,E,F分别是AC,AB,BC的中点.
(1)求证:EF⊥PD;
(2)求直线PF与平面PBD所成的角的大小;
(3)求二面角E-PF-B的大小.
(1)证明:连接BD
在△ABC中,∠ABC=90°
∵AB=BC,点D为AC的中点,∴BD⊥AC
∵PB⊥平面ABC,∴BD为PD在平面ABC内的射影
∴PD⊥AC
∵E、F分别为AB、BC的中点,∴EFAC
∴EF⊥PD;
(2)∵PB⊥平面ABC,∴PB⊥EF.
连接BD交EF于点O,∵EF⊥PB,EF⊥PD,∴EF⊥平面PBD,
∴∠FPO为直线PF与平面PBD所成的角,EF⊥PO.
∵PB⊥面ABC,∴PB⊥AB,PB⊥BC,又∵∠PAB=45°,
∴PB=AB=2.
在Rt△FPO中,OF=
1
4
AC
=
2
2
,PF=
PB2+BF2
=
5

∴sin∠FPO=
OF
PF
=
10
10

∴直线PF与平面PBD所成的角为arcsin
10
10

(3)过点B作BM⊥PF于点F,连接EM,
∵AB⊥PB,AB⊥BC,
∴AB⊥平面PBC,即BM为EM在平面PBC内的射影,
∴EM⊥PF,
∴∠EMB为二面角E-PF-B的平面角.
∵Rt△PBF中,BM=
PB•BF
PF
=
2
5

∴tan∠EMB=
EB
BM
=
5
2

∴二面角E-PF-B的大小为arctan
5
2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

如图,在三棱柱ABC-A1B1C1中,AC=BC=CC1∠ACB=90°,CC1⊥平面ABC,则AC1与平面ABB1A1所成角的大小为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,平面α上定点F到定直线l的距离FA=2,曲线C是平面α上到定点F和到定直线l的距离相等的动点P的轨迹.设FB⊥α,且FB=2.
(1)若曲线C上存在点P0,使得P0B⊥AB,试求直线P0B与平面α所成角θ的大小;
(2)对(1)中P0,求点F到平面ABP0的距离h.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知二面角α-l-β的大小为120°,点B,C在棱l上,A∈α,D∈β,AB⊥l,CD⊥l,AB=2,BC=1,CD=3,则AD的长为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,直四棱柱ABCD-A1B1C1D1的高为3,底面是边长为4且∠DAB=60°的菱形,AC∩BD=O,A1C1∩B1D1=O1,则二面角O1-BC-D的大小为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图△BCD与△MCD都是边长为2的正三角形,平面MCD⊥平面BCD,AB⊥平面BCD,AB=2
3

(1)求点A到平面MBC的距离;
(2)求平面ACM与平面BCD所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方体AC1
(1)在BD上确定一点E,使D1E面A1C1B;
(2)求直线BB1和面A1C1B所成角的正弦值;
(3)求面A1C1B与底面ABCD所成二面角的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正三棱柱ABC-A1B1C1的每条棱长均为a,M为棱A1C1上的动点.
(1)当M在何处时,BC1平面MB1A,并证明之;
(2)在(1)下,求平面MB1A与平面ABC所成的二面角的大小;
(3)求B-AB1M体积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

A、B是直二面角α-l-β的棱l上的两点,分别在α,β内作垂直于棱l的线段AC,BD,已知AB=AC=BD=1,那么CD的长为(  )
A.1B.2C.
2
D.
3

查看答案和解析>>

同步练习册答案