精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=lg($\sqrt{{x}^{2}+1}$-x)
(1)判断函数的奇偶性;
(2)判断函数的单调性.

分析 (1)首先,求解该函数定义域,然后,根据奇函数的定义判断其奇偶性;
(2)直接结合函数的单调性确定其单调性即可.

解答 解:(1)该函数为奇函数,证明如下:
∵$\sqrt{{x}^{2}+1}$-x>0,
∴$\sqrt{{x}^{2}+1}$>x,
∴x∈R,
∴该函数的定义域为(-∞,+∞),
∵f(-x)=lg($\sqrt{{x}^{2}+1}$-x),
=lg($\sqrt{{x}^{2}+1}$+x)
=lg($\sqrt{{x}^{2}+1}$-x)-1
=-lg($\sqrt{{x}^{2}+1}$-x)
=-f(x),
∴f(-x)=-f(x),
∴该函数为奇函数.
(2)该函数为减函数,证明如下:
任意设x1,x2∈R,且x1<x2
∵f(x1)-f(x2
=lg($\sqrt{{{x}_{1}}^{2}+1}-{x}_{1}$)-lg($\sqrt{{{x}_{2}}^{2}+1}-{x}_{2}$)
=lg$\frac{\sqrt{{{x}_{1}}^{2}+1}-{x}_{1}}{\sqrt{{{x}_{2}}^{2}+1}-{x}_{2}}$
=lg$\frac{\sqrt{{{x}_{2}}^{2}+1}+{x}_{2}}{\sqrt{{{x}_{1}}^{2}+1}+{x}_{1}}$,
∵0<$\sqrt{{{x}_{1}}^{2}+1}+{x}_{1}<\sqrt{{{x}_{2}}^{2}+1}+{x}_{2}$,
∴lg$\frac{\sqrt{{{x}_{2}}^{2}+1}+{x}_{2}}{\sqrt{{{x}_{1}}^{2}+1}+{x}_{1}}$>0,
∴f(x1)>f(x2
∴该函数为减函数.

点评 本题重点考查了函数的定义域、函数的奇偶性、单调性的判断和证明方法,考查了对数的运算性质等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.(x+2)(1-$\frac{2}{x}$)4展开式的常数项为-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知x3-x7=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…+a8(x-1)7,则a3=(  )
A.35B.36C.-34D.-33

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求y=tan(3x-$\frac{π}{6}$)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知平面直角坐标系中,直线l的参数方程为$\left\{\begin{array}{l}{x=4+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t是参数),以O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C:ρ=2cosθ.
(1)求曲线C的直角坐标系方程和直线l的普通方程;
(2)直线l和x轴交于点A,点B是曲线C上的动点,求AB的中点D到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求证:2cos2θ+sin4θ=cos4θ+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设平面α⊥平面β,点P在平面α内,过点P作平面β的垂线α,直线α与平面α具有什么位置关系?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知双曲线M:9x2-16y2=144,若椭圆N以M的焦点为顶点,以M的顶点为焦点,则椭圆N的准线方程是(  )
A.x=±$\frac{16}{5}$B.x=±$\frac{25}{4}$C.x=±$\frac{16}{3}$D.x=±$\frac{25}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知A,D分别是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左顶点和上顶点,点P是线段AD上的任意一点,点F1,F2分别是椭圆的左,右焦点,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最大值是1,最小值是-$\frac{11}{5}$,则椭圆的标准方程$\frac{{x}^{2}}{4}$+y2=1.

查看答案和解析>>

同步练习册答案