精英家教网 > 高中数学 > 题目详情
袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球
(Ⅰ)试问:一共有多少种不同的结果?请列出所有可能的结果;
(Ⅱ)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率.
分析:(1)由分步计数原理知这个过程一共有8个结果,按照一定的顺序列举出所有的事件,顺序可以是按照红球的个数由多变少变化,这样可以做到不重不漏.
(2)本题是一个等可能事件的概率,由前面可知试验发生的所有事件数,而满足条件的事件包含的基本事件为:(红、红、黑)、(红、黑、红)、(黑、红、红),根据古典概型公式得到结果.
解答:解:(I)一共有8种不同的结果,列举如下:
(红、红、红、)、(红、红、黑)、(红、黑、红)、(红、黑、黑)、(黑、红、红)、(黑、红、黑)、(黑、黑、红)、(黑、黑、黑)
(Ⅱ)本题是一个等可能事件的概率
记“3次摸球所得总分为5”为事件A
事件A包含的基本事件为:(红、红、黑)、(红、黑、红)、(黑、红、红)事件A包含的基本事件数为3
由(I)可知,基本事件总数为8,
∴事件A的概率为P(A)=
3
8
点评:用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候注意作到不重不漏.解决了求古典概型中基本事件总数这一难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

袋中有大小、形状相同的红、黑球各一个,现有放回地随机摸3次,每次摸取一个球,考虑摸出球的颜色.
(1)试写出此事件的基本事件空间;
(2)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分不小于5分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中有大小、形状相同的红、白球各一个,现依次有放回地随机摸取3次,每次摸取一个球.
(I)求三次颜色全相同的概率;
(Ⅱ)若摸到红球时得2分,摸到白球时得1分,求3次摸球所得总分不小于5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球.
(I)试问:一共有多少种不同的结果?请列出所有可能的结果;
(II)若摸到红球时得2分,摸到黑球时得1分,设3次摸球所得总分为ξ,求ξ的数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中有大小、形状相同的红、黑球各1个,现在有放回地随机摸取3次,每次摸取1个球,若摸到红球得2分,摸到黑球得1分,则这3次摸球所得总分小于5分的概率为
 

查看答案和解析>>

同步练习册答案