【题目】在四棱锥中,底面为正方形,平面平面,且为等边三角形,若四棱锥的体积与四棱锥外接球的表面积大小之比为,则四棱锥的表面积为___________.
【答案】
【解析】
设四棱锥外接球的球心为,等边三角形外接圆的圆心为,则为 的重心,可证四边形 为矩形,所以.设正方形 的边长为,则,所以,,得到四棱锥 外接球的表面积和体积为,结合题目条件解得,求出四棱锥 的各个面的面积,从而求出四棱锥 的表面积.
如图,
连接,交于点,取的中点为,连接.
设四棱锥外接球的球心为,等边三角形外接圆的圆心为,
则为的重心,则,正方形外接圆的圆心为.
因为,平面平面,
所以平面,所以,
所以四边形为矩形,
所以.
设正方形的边长为,则,
所以,,
所以四棱锥外接球的半径为,
所以四棱锥外接球的表面积为,
四棱锥的体积为,
所以,即,解得,
所以正方形的边长为2,所以,
所以四棱锥的表面积为.
故答案为:.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xoy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系。已知曲线C的极坐标方程为,过点的直线l的参数方程为(为参数),直线l与曲线C交于M、N两点。
(1)写出直线l的普通方程和曲线C的直角坐标方程:
(2)若成等比数列,求a的值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某人经营一个抽奖游戏,顾客花费3元钱可购买一次游戏机会,每次游戏中,顾客从标有黑1、黑2、黑3、黑4、红1、红3的6张卡片中随机抽取2张,并根据摸出的卡片的情况进行兑奖,经营者将顾客抽到的卡片情况分成以下类别::同花顺,即卡片颜色相同且号码相邻;:同花,即卡片颜色相同,但号码不相邻;:顺子,即卡片号码相邻,但颜色不同;:对子,即两张卡片号码相同;:其它,即,,,以外的所有可能情况,若经营者打算将以上五种类别中最不容易发生的一种类别对应顾客中一等奖,最容易发生的一种类别对应顾客中二等奖,其他类别对应顾客中三等奖.
(1)一、二等奖分别对应哪一种类别?(写出字母即可)
(2)若经营者规定:中一、二、三等奖,分别可获得价值9元、3元、1元的奖品,假设某天参与游戏的顾客为300人次,试估计经营者这一天的盈利.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校有40名高中生参加足球特长生初选,第一轮测身高和体重,第二轮足球基础知识问答,测试员把成绩(单位:分)分组如下:第1组,第2组,第3组,第4组,第5组,得到频率分布直方图如图所示.
(1)根据频率分布直方图估计成绩的平均值(同一组中的数据用该组区间的中点值作代表);
(2)用分层抽样的方法从成绩在第3,4,5组的高中生中抽取6名组成一个小组,若再从这6人中随机选出2人担任小组负责人,求这2人来自第3,4组各1人的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十九大提出对农村要坚持精准扶贫,至2020年底全面脱贫.现有扶贫工作组到某山区贫困村实施脱贫工作.经摸底排查,该村现有贫闲农户100家,他们均从事水果种植,2017年底该村平均每户年纯收入为1万元.扶贫工作组一方面请有关专家对果树进行品种改良,提高产量;另一方面,抽出部分农户从事水果包装、销售工作,其人数必须小于种植的人数.从2018年初开始,该村抽出户()从事水果包装、销售.经测算,剩下从事水果种植农户的年纯收入每户平均比上一年提高,而从事包装销售农户的年纯收入每户平均为万元(参考数据:).
(1)至2020年底,为使从事水果种植农户能实现脱贫(每户年均纯收入不低于1万5千元),则应至少抽出多少户从事包装、销售工作?
(2)至2018年底,该村每户年均纯收人能否达到1.355万元?若能,请求出从事包装、销售的户数;若不能,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥S-ABCD中,底面ABCD是菱形,,为等边三角形,G是线段SB上的一点,且SD//平面GAC.
(1)求证:G为SB的中点;
(2)若F为SC的中点,连接GA,GC,FA,FG,平面SAB⊥平面ABCD,,求三棱锥F-AGC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线Γ的准线方程为.焦点为.
(1)求证:抛物线Γ上任意一点的坐标都满足方程:
(2)请求出抛物线Γ的对称性和范围,并运用以上方程证明你的结论;
(3)设垂直于轴的直线与抛物线交于两点,求线段的中点的轨迹方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com