【题目】设M={x| },N={x|x2+(a﹣8)x﹣8a≤0},命题p:x∈M,命题q:x∈N.
(1)当a=﹣6时,试判断命题p是命题q的什么条件;
(2)求a的取值范围,使命题p是命题q的一个必要但不充分条件.
【答案】
(1)解: M={x| }={x|x<﹣3或x>5},
当a=﹣6时,N={x|x2+(a﹣8)x﹣8a≤0}={x|x2﹣14x+48≤0}={x|6≤x≤8},
∵命题p:x∈M,命题q:x∈N,
∴qp,p推不出q,
∴命题p是命题q的必要不充分条件.
(2)解:∵M={x|x<﹣3或x>5},N={x|(x﹣8)(x+a)≤0},
命题p是命题q的必要不充分条件,
当﹣a>8,即a<﹣8时,N={x|8<x<﹣a},此时命题成立;
当﹣a=8,即a=﹣8时,N={8},命题成立;
当﹣a<8,即a>﹣8时,此时N={﹣a<x<8},故有﹣a>5,解得a<﹣5,
综上所述,a的取值范围是{a|a<﹣5}
【解析】(1)解分式不等式求出M={x|x<﹣3或x>5},当a=﹣6时,解一元二次不等式求出N={x|6≤x≤8},由此能够得到命题p是命题q的必要不充分条件.(2)由M={x|x<﹣3或x>5},N={x|(x﹣8)(x+a)≤0},命题p是命题q的必要不充分条件,分类讨论能够求出a的取值范围.
科目:高中数学 来源: 题型:
【题目】已知为常数, ,函数, (其中是自然对数的底数).
(1)过坐标原点作曲线的切线,设切点为,求证: ;
(2)令,若函数在区间上是单调函数,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(ωx+φ)﹣b(ω>0,0<φ<π)的图象两对称轴之间的距离是 ,若将f(x)的图象先向由平移 个单位,再向上平移 个单位,所得函数g(x)为奇函数.
(1)求f(x)的解析式;
(2)求f(x)的单调递减区间和对称中心.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一河南旅游团到安徽旅游.看到安徽有很多特色食品,其中水果类较有名气的有:怀远石榴、砀山梨、徽州青枣等19种,点心类较有名气的有:一品玉带糕、徽墨酥、八公山大救驾等38种,小吃类较有名气的有:符离集烧鸡、无为熏鸭、合肥龙虾等57种.该旅游团的游客决定按分层抽样的方法从这些特产中买6种带给亲朋品尝.
(1)求应从水果类、点心类、小吃类中分别买回的种数;
(2)若某游客从买回的6种特产中随机抽取2种送给自己的父母,
①列出所有可能的抽取结果;
②求抽取的2种特产均为小吃的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,点M,N分别为线段A1B,AC1的中点.
(1)求证:MN∥平面BB1C1C;
(2)若D在边BC上,AD⊥DC1 , 求证:MN⊥AD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图△ABC中,AC=BC= AB,四边形ABED是边长为a的正方形,平面ABED⊥平面ABC,若G、F分别是EC、BD的中点.
(1)求证:GF∥平面ABC;
(2)求证:平面EBC⊥平面ACD;
(3)求几何体ADEBC的体积V.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平面直角坐标系xOy中,△AOB和△COD为两等腰直角三角形,A(﹣2,0),C(a,0),(a>0),设△AOB和△COD的
外接圆圆心分别为点M、N.
(Ⅰ)若⊙M与直线CD相切,求直线CD的方程;
(Ⅱ)若直线AB截⊙N所得弦长为4,求⊙N的标准方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com