精英家教网 > 高中数学 > 题目详情
20.已知sin(π-α)-cos(π+α)=$\frac{\sqrt{2}}{3}$($\frac{π}{2}$<α<π).求值:
(1)sinα-cosα;
(2)sin3(3π-α)+cos3(2π-α).

分析 (1)根据角的范围,求出2sinαcosα=-$\frac{7}{9}$,继而求出sinα-cosα=$\frac{4}{3}$,
(2)根据诱导公式和立方和公式,即可求出答案.

解答 解:(1)sin(π-α)-cos(π+α)=sinα+cosα=$\frac{\sqrt{2}}{3}$,($\frac{π}{2}$<α<π).
∴sinα>0,cosα<0,
∵sin2α+cos2α=1,
∴(sinα+cosα)2=1+2sinαcosα=$\frac{2}{9}$
∴2sinαcosα=-$\frac{7}{9}$,
∴(sinα-cosα)2=1-2sinαcosα=1+$\frac{7}{9}$=$\frac{16}{9}$,
∴sinα-cosα=$\frac{4}{3}$,
(2)sin3(3π-α)+cos3(2π-α)=sin3α+cos3α=(sinα+cosα)(sin2α+cos2α-sinαcosα)=$\frac{\sqrt{2}}{3}$(1+$\frac{7}{18}$)=$\frac{25\sqrt{2}}{54}$.

点评 本题主要考查同角三角函数的基本关系的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.如图,两座相距60m的建筑物AB,CD的高度分别为20m,50m,BD为水平面,则从建筑物AB的顶端A看建筑物CD的张角为(  )
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在正方体ABCD-A1B1C1D1中,E、F分别是A1A、A1B1的中点,求EF与平面A1ACC1所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知全集U=R,集合A={1,2,3,4,5},B={x∈R|x>2},下图中阴影部分所表示的集合为(  )
A.{1}B.{0,1}C.{1,2}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知二次函数f(x)=x2-(m-1)x+2m在[0,1]上有且只有一个零点,则实数m的取值范围为(  )
A.(-2,0)B.(-1,0)C.(-2,-1)D.[-2,0]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列函数中,既是偶函数,又在(0,+∞)单调递增的函数是(  )
A.y=|lgx|B.y=2-|x|C.y=|$\frac{1}{x}$|D.y=lg|x|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设D为△ABC所在平面内一点,$\overrightarrow{BC}$=3$\overrightarrow{CD}$,则(  )
A.$\overrightarrow{AD}$=-$\frac{1}{3}$$\overrightarrow{AC}$+$\frac{4}{3}$$\overrightarrow{AB}$B.$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{4}{3}$$\overrightarrow{AC}$C.$\overrightarrow{AD}$=$\frac{4}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$D.$\overrightarrow{AD}$=$\frac{4}{3}$$\overrightarrow{AC}$-$\frac{1}{3}$$\overrightarrow{AB}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数$y=2cos(\frac{π}{4}-2x)$的单调减区间是(  )
A.$\{x|kπ+\frac{π}{8}≤x≤kπ+\frac{5π}{8},k∈Z\}$B.{x|kπ-$\frac{3π}{8}$≤x≤kπ+$\frac{π}{8}$,k∈Z}
C.{x|2kπ+$\frac{π}{8}$≤x≤2kπ+$\frac{5π}{8}$,k∈Z}D.{x|2kπ-$\frac{3π}{8}$≤x≤2kπ+$\frac{π}{8}$,k∈Z}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>b>0)的渐近线和圆x2+y2-6y+8=0相切,则该双曲线的离心率等于(  )
A.$\sqrt{2}$B.2C.3D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案