已知两点、,点为坐标平面内的动点,满足.
(1)求动点的轨迹方程;
(2)若点是动点的轨迹上的一点,是轴上的一动点,试讨论直线与圆的位置关系.
(1)动点的轨迹方程为;(2)点的纵坐标为.
【解析】
试题分析:(1)设动点的坐标为,直接利用题中的条件列式并化简,从而求出动点的轨迹方程;(2)先设点,利用导数求出曲线在点和点处的切线方程,并将两切线方程联立,求出交点的坐标,利用两切线垂直得到,从而求出点的纵坐标.
试题解析:(1)设,则,∵,
∴. 即,即,
所以动点的轨迹M的方程. 4分
(2)设点、的坐标分别为、,
∵、分别是抛物线在点、处的切线,
∴直线的斜率,直线的斜率.
∵,
∴, 得. ①
∵、是抛物线上的点,
∴
∴直线的方程为,直线的方程为.
由 解得
∴点的纵坐标为.
考点:1.动点的轨迹方程;2.利用导数求切线方程;3.两直线的位置关系;4.两直线的交点
科目:高中数学 来源: 题型:
| ||
2 |
2 |
3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)已知两点、,点为坐标平面内的动点,满足.(1)求动点的轨迹方程;(2)若点是动点的轨迹上的一点,是轴上的一动点,试讨论直线与圆的位置关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com