精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面,底面是直角梯形,上的点.

)求证:平面平面

的中点,且二面角的余弦值为,求直线与平面所成角的正弦值.

【答案】)证明见解析;(

【解析】

试题分析:要证面面垂直,就要证线面垂直,首选寻找直线垂直,在底面直角梯形中,,可证得,又可得,从而有平面,从而可得面面垂直;()结合()的证明,为了求直线与平面所成的角,以为原点,轴,垂直于的直线为轴,轴,建立空间直角坐标系,这样易写出各点坐标,同时设后分别可得,求出平面和平面的法向量,由二面角与法向量夹角的关系求得由向量的夹角(或补角)与直线和平面所成的角互余可得结论.

试题解析:)证明:平面ABCD平面ABCD

.

.

平面

平面平面平面

)以为原点,建立空间直角坐标系如图所示,

C000),110),1,-10

00)(),则),

=1,-10

为面的法向量

为面的法向量,则

,取,则

依题意,,则

于是.

设直线与平面所成角为,则

即直线与平面所成角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.

(1)若a=1.5,问:观察者离墙多远时,视角θ最大?
(2)若tanθ= ,当a变化时,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(sinθ,cosθ﹣2sinθ), =(1,2).
(1)若 ,求tanθ的值;
(2)若 ,求θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点的动直线与抛物线相交于两点.当直线的斜率是时,.

(1)求抛物线的方程;

(2)设线段的中垂线在轴上的截距为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆上的点到两个焦点的距离之和为,短轴长为,直线与椭圆交于两点.

1求椭圆的方程;

2若直线与圆相切,探究是否为定值,如果是定值,请求出该定值;如果不是定值,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆上的点到两个焦点的距离之和为,短轴长为,直线与椭圆交于两点.

1求椭圆的方程;

2若直线与圆相切,探究是否为定值,如果是定值,请求出该定值;如果不是定值,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当 时, 恒成立,求的取值范围;

(Ⅱ)当 时,研究函数的零点个数;

(Ⅲ)求证: (参考数据: ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过原点的动直线与圆相交于不同的两点

1求线段的中点的轨迹的方程;

2是否存在实数使得直线与曲线只有一个交点?若存在求出的取值范围;若不存在请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=2cos2x+ sin2x﹣1.
(1)求f(x)的最大值及此时的x值
(2)求f(x)的单调减区间
(3)若x∈[﹣ ]时,求f(x)的值域.

查看答案和解析>>

同步练习册答案