精英家教网 > 高中数学 > 题目详情
在正三棱锥P-ABC中,M,N分别是PB,PC的中点,若截面AMN⊥侧面PBC,则此棱锥截面与底面所成的二面角正弦值是
6
6
6
6
分析:取MN和BC的中点分别为E,F,可以证明BC∥截面AMN,设截面AMN∩平面ABC=l,从而BC∥l,故可知∠EAF为所作的二面角,从而可求棱锥截面与底面所成的二面角正弦值.
解答:解:取MN和BC的中点分别为E,F,
∵M,N分别是PB,PC的中点,
∴MN∥BC
∵MN?截面AMN
∴BC∥截面AMN
设截面AMN∩平面ABC=l
∴BC∥l
∵E,F分别为MN和BC的中点
∴AE⊥MN,AF⊥BC
∴∠EAF为所作的二面角的平面角,
设AB=a,∵截面AMN⊥侧面PBC,∴侧棱PA=PB=PC=
3
2
a
,∴DF=
2
2
a
,∴EF=
2
4
a

在直角△AEF中,AF=
3
2
a
,EF=
2
4
a

sin∠EAF=
6
6

故答案为:
6
6
点评:本题考查二面角的作法与计算,解题的关键是正确作出面面角、
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、在正三棱锥P-ABC中,D、E分别是AB、BC的中点,有下列四个论断:①AC⊥PB;②AC∥平面PDE;③AB⊥平面PDE;④平面PDE⊥平面ABC.其中正确的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥P-ABC中,D,E分别是AB,BC的中点,有下列三个论断:
①AC⊥PB;
②AC∥平面PDE;
③AB⊥平面PDE.
其中正确论断的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥P-ABC中,三条侧棱两两垂直,且侧棱长为a,则点P到平面ABC的距离为
3
3
a
3
3
a

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥P-ABC中,AB=
2
,PA=
3
+1
,过点A作截面交PB,PC分别于D,E,则截面△ADE的周长的最小值是
6
+
2
6
+
2

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正三棱锥P-ABC中,M、N分别是侧棱PB、PC的中点,若截面AMN⊥侧面PBC,底面边长为2,则此三棱锥的体积是(  )
A、
3
2
B、
5
3
C、
5
D、
15
3

查看答案和解析>>

同步练习册答案