精英家教网 > 高中数学 > 题目详情

已知等差数列的首项,前项和为
(I)求
(Ⅱ)设,求的最大值.

(1);(2)的最大值为

解析试题分析:本题主要考查等差数列的概念与通项公式、求和公式、不等式等基础知识,同时考查运算求解能力.第一问,利用等差数列的通项公式将展开,用表示,将代入,求出,代入到等差数列的通项公式和前n项和公式中;第二问,将第一问的结论代入,整理表达式,利用基本不等式求的最小值,从而求出的最大值.
试题解析:(Ⅰ) 设公差为,由题意知
解得
.            8分
(Ⅱ) 由(I)得
由基本不等式得
所以,又当时,
从而得的最大值为.                     14分
考点:1.等差数列的通项公式;2.基本不等式;3.等差数列的前n项和公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

是公差大于零的等差数列,已知.
(Ⅰ)求的通项公式;
(Ⅱ)设是以函数的最小正周期为首项,以为公比的等比数列,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列前三项的和为,前三项的积为.
(1)求等差数列的通项公式;
(2)若成等比数列,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是公比大于1的等比数列,为数列的前项和.已知,且构成等差数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)令,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足:是数列的前n项和.数列前n项的积为,且
(Ⅰ)求数列的通项公式;
(Ⅱ)是否存在常数a,使得成等差数列?若存在,求出a,若不存在,说明理由;
(Ⅲ)是否存在,满足对任意自然数时,恒成立,若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项的和为,求证:数列为等差数列的充要条件是

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列,公差不为零,,且成等比数列;
⑴求数列的通项公式;
⑵设数列满足,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列为等差数列,数列为等比数列,若,且.
(1)求数列的通项公式;
(2)是否存在,使得,若存在,求出所有满足条件的;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

等差数列{an}的前n项和为Sn,已知S3=,且S1,S2,S4成等比数列,
(1)求数列{an}的通项公式.
(2)若{an}又是等比数列,令bn= ,求数列{bn}的前n项和Tn.

查看答案和解析>>

同步练习册答案