精英家教网 > 高中数学 > 题目详情
14.若实数k满足0<k<9,则曲线$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9-k}$=1与曲线$\frac{{x}^{2}}{25-k}$-$\frac{{y}^{2}}{9}$=1的(  )
A.离心率相等B.虚半轴长相等C.实半轴长相等D.焦距相等

分析 根据k的取值范围,判断曲线为对应的双曲线,以及a,b,c的大小关系即可得到结论.

解答 解:当0<k<9,则0<9-k<9,16<25-k<25
曲线$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9-k}$=1表示焦点在x轴上的双曲线,其中a2=25,b2=9-k,c2=34-k,
曲线$\frac{{x}^{2}}{25-k}$-$\frac{{y}^{2}}{9}$=1表示焦点在x轴上的双曲线,其中a2=25-k,b2=9,c2=34-k,
即两个双曲线的焦距相等,
故选:D.

点评 本题主要考查双曲线的方程和性质,根据不等式的范围判断a,b,c是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,在矩形ABCD中,AB=1,AD=a,PA⊥平面ABCD,且PA=1,E,F分别为AD,PA中点,在BC上有且只有一个点Q,使得PQ⊥QD.
(1)求证:平面BEF∥平面PDQ;
(2)求二面角E-BF-Q的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列向量组中,能作为平面内所有向量的基底的是(  )
A.$\overrightarrow{a}$=(0,0),$\overrightarrow{b}$=(1,-2)B.$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(5,7)C.$\overrightarrow{a}$=(3,5),$\overrightarrow{b}$=(6,10)D.$\overrightarrow{a}$=(2,-3),$\overrightarrow{b}$=(4,-6)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知动圆过定点A(4,0),且在y轴上截得的弦MN的长为8.
(Ⅰ) 求动圆圆心的轨迹C的方程;
(Ⅱ) 已知点B(-3,0),设不垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是∠PBQ的角平分线,证明直线l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知△ABC,AB=4,BC=3,AC=5,现以AB为轴旋转一周,则所得几何体的表面积(  )
A.24πB.21 πC.33πD.39 π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|(3-x)(x+1)>0},B={x|-2<x≤1},则A∩B=(  )
A.(-1,1]B.(-2,3]C.(-2,-1)D.(-2,1-)∪[1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=alnx-bx2(x>0),若函数y=f(x)在x=1处与直线y=-1相切.
(1)求实数a,b的值;
(2)求函数y=f(x)在$[{\frac{1}{e},e}]$上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知单位圆O与x轴正半轴相交于点M,点A,B在单位圆上,其中点A在第一象限,且∠AOB=$\frac{π}{2}$,记∠MOA=α,∠MOB=β.
(Ⅰ)若α=$\frac{π}{6}$,求点A,B的坐标;
(Ⅱ)若点A的坐标为($\frac{4}{5}$,m),求sinα-sinβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在空间直角坐标系中,点A(-1,2,0)关于平面yOz的对称点坐标为(1,2,0).

查看答案和解析>>

同步练习册答案