精英家教网 > 高中数学 > 题目详情
18.在△ABC中,内角A,B,C的对边分别为a,b,c,且$\frac{(a+b)^{2}-{c}^{2}}{ab}$=1.
(Ⅰ)求∠C;
(Ⅱ)若c=$\sqrt{3}$,b=$\sqrt{2}$,求∠B及△ABC的面积.

分析 (Ⅰ)由已知将条件式变形得:a2+b2-c2=-ab,由余弦定理得cosC=-$\frac{1}{2}$,结合范围0<C<π,可求C的值.
(Ⅱ)由正弦定理可求sinB,进而可求B,利用两角和的正弦函数公式可求sinA的值,进而利用三角形面积公式即可计算得解.

解答 解:(Ⅰ)由已知将条件式化简(a+b)2-c2=ab,
变形得:a2+b2-c2=-ab,
由余弦定理得cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=-$\frac{1}{2}$,
∵0<C<π,
∴C=$\frac{2π}{3}$.
(Ⅱ)在△ABC中,由正弦定理$\frac{b}{sinB}=\frac{c}{sinC}$,
即$\frac{\sqrt{2}}{sinB}=\frac{\sqrt{3}}{sin\frac{2π}{3}}$,可得:sinB=$\frac{\sqrt{2}}{2}$,
∴B=$\frac{π}{4}$,
在△ABC中,sinA=sin(B+C)=sinBcosC+cosBsinC=$\frac{\sqrt{2}}{2}×(-\frac{1}{2})+\frac{\sqrt{2}}{2}×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{6}-\sqrt{2}}{4}$,
由三角形面积公式得S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}×\sqrt{3}×\sqrt{2}×\frac{\sqrt{6}-\sqrt{2}}{4}$=$\frac{3-\sqrt{3}}{4}$.

点评 本题主要考查了余弦定理,正弦定理,两角和的正弦函数公式,三角形面积公式在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{\begin{array}{l}-x-4,x≤-1\\{x^2}-5,x>-1\end{array}$,则满足f(a)-11=0的实数a的值为(  )
A.-15或-4B.-4或4C.-15或4D.-15或-4或4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知f(x)是定义在R上的增函数,函数y=f(x-1)的图象关于点(1,0)对称,若对任意的x,y∈R,等式f(y-3)+f($\sqrt{4x-{x}^{2}-3}$)=0恒成立,则$\frac{y}{x}$的取值范围是[2-$\frac{2\sqrt{3}}{3}$.3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列命题中真命题的个数是(  )
(1)对于命题p:?x∈R,使得x2+x-1<0,则?p:?x∈R,均有x2+x-1>0;
(2)“m=-1”是“直线l1:mx+(2m-1)y+1=0与直线l2:3x+my+3=0垂直”的充分不必要条件;
(3)命题p:x≠y,q:sinx≠siny,则p是q的必要不充分条件;
(4)设函数f(x)的定义域是R,则“?x∈R,f(x+1)>f(x),”是“函数f(x)为增函数”的充要条件.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设实数x,y满足条件$\left\{\begin{array}{l}{x+1≥0}\\{x-y+1≤0}\\{x+y-2≤0}\end{array}\right.$,则z=y-2x的最小值为(  )
A.5B.$\frac{1}{2}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{{n}^{2}}$=1(m,n>0)的离心率为3,有一个焦点与抛物线$y=\frac{1}{12}{x^2}$的焦点相同,那么双曲线的渐近线方程为(  )
A.2$\sqrt{2}$x±y=0B.x±2$\sqrt{2}$y=0C.x±2y=0D.2x±y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数y=kx+1(k>0)与y=$\frac{x+1}{x}$与图象的交点为A、B.则|$\overrightarrow{OA}+\overrightarrow{OB}$|的值(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若正三棱锥的底面边长为$\sqrt{2}$,侧棱长为1,则此三棱锥的体积为(  )
A.$\frac{1}{3}$B.$\frac{1}{6}$C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知正方体ABCD-A1B1C1D1棱长为1,动点P在此正方体的表面上运动,且PA=r$(0<r<\sqrt{3})$,记点P的轨迹长度为f(r),则关于r的方程$f(r)=\frac{3π}{2}$的解集为$\{1,\sqrt{2}\}$.

查看答案和解析>>

同步练习册答案