精英家教网 > 高中数学 > 题目详情

已知数列{an}中,a1=1,an+1 (n∈N*).
(1)求数列{an}的通项an
(2)若数列{bn}满足bn=(3n-1)an,数列{bn}的前n项和为Tn,若不等式(-1)nλTn对一切n∈N*恒成立,求λ的取值范围.

(1)(2)-1<λ<2

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知成等比数列, 公比为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的各项均满足
(1)求数列的通项公式;
(2)设数列的通项公式是,前项和为
求证:对于任意的正数,总有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设Sn为数列{an}的前n项和,已知a1≠0,2an-a1=S1·Sn,n∈N*.
(1)求a1,a2,并求数列{an}的通项公式;
(2)求数列{nan}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等比数列{an}满足an+1an=9·2n-1n∈N*.
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项和为Sn,若不等式Snkan-2对一切n∈N*恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列{an}中,a1=3,an+1=an+cn(c是常数,n=1,2,3,…),且a1,a2,a3成公比不为1的等比数列.
(1)求c的值;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}是等差数列,a2=6,a5=12,数列{bn}的前n项和是Sn,且Sn+bn=1.
(1)求数列{an}的通项公式.
(2)求证:数列{bn}是等比数列.
(3)记cn=,{cn}的前n项和为Tn,若Tn<对一切n∈N*都成立,求最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}和{bn}满足:a1λan+1ann-4,bn=(-1)n(an-3n+21),其中λ为实数,n为正整数.
(1)对任意实数λ,证明:数列{an}不是等比数列;
(2)试判断数列{bn}是否为等比数列,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,设曲线在点处的切线与轴的交点为,其中为正实数.
(1)用表示
(2),若,试证明数列为等比数列,并求数列的通项公式;
(3)若数列的前项和,记数列的前项和,求

查看答案和解析>>

同步练习册答案