精英家教网 > 高中数学 > 题目详情

【题目】为了解儿子身高与其父亲身高的关系,随机调查了5对父子的身高,统计数据如下表所示.

1)从这五对父子任意选取两对,用编号表示出所有可能取得的结果,并求随机事件M两对父子中儿子的身高都不低于父亲的身高发生的概率;

2)由表中数据,利用最小二乘法关于的回归直线的方程.

参考公式:;回归直线:

【答案】1;(2

【解析】

1)采用列举法先列举全部基本事件,统计事件M包含的基本事件个数,根据古典概型概率计算公式求解概率;

2)先求解出的值,然后根据以及表中数据计算出的值,再根据计算出的值,即可求出回归直线的方程.

1)全部基本事件有

10.

其中事件所包含基本事件有,共3个,

所以.

2

.

所以回归直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】暑假期间,某旅行社为吸引游客去某风景区旅游,推出如下收费标准:若旅行团人数不超过30,则每位游客需交费用600元;若旅行团人数超过30,则游客每多1人,每人交费额减少10元,直到达到70人为止.

(1)写出旅行团每人需交费用(单位:元)与旅行团人数之间的函数关系式;

(2)旅行团人数为多少时,旅行社可以从该旅行团获得最大收入?最大收入是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆锥的顶点为,底面圆心为,母线长为是底面半径,且:为线段的中点,为线段的中点,如图所示:

1)求圆锥的表面积;

2)求异面直线所成的角的大小,并求两点在圆锥侧面上的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线过点,且与轴、轴都交于正半轴,当直线与坐标轴围成的三角形面积取得最小值时,求:

(1)直线的方程;

(2)直线l关于直线m:y=2x-1对称的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的首项

(1)求证:数列为等比数列;

(2)记,若Sn<100,求最大正整数n

(3)是否存在互不相等的正整数msn,使msn成等差数列,且am-1,as-1,an-1成等比数列?如果存在,请给以证明;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位共有老、中、青职工430,其中青年职工160人,中年职工人数是老年职工人数的2倍。为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为

A. 9 B. 18 C. 27 D. 36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

是函数的极值点,1是函数的一个零点,求的值;

时,讨论函数的单调性;

若对任意,都存在,使得成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆.

(Ⅰ)设直线被圆所截得的弦的中点为,判断点与圆的位置关系;

(Ⅱ)设圆被圆截得的一段圆弧(在圆内部,含端点)为,若直线与圆弧只有一个公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在平行四边形中,边的中点,将沿折起,使点到达点的位置,且

(1)求证; 平面平面

(2)若平面和平面的交线为,求二面角的余弦值.

查看答案和解析>>

同步练习册答案