精英家教网 > 高中数学 > 题目详情
已知等腰梯形PDCB中(如图1),PB=3,DC=1,PB=BC=,A为PB边上一点,且PA=1,将△PAD沿AD折起,使面
PAD⊥面ABCD(如图2)。
(1)证明:平面PAD⊥PCD;
(2)试在棱PB上确定一点M,使截面AMC,把几何体分成的两部分
(3)在M满足(Ⅱ)的情况下,判断直线AM是否平行面PCD.
(1)证明见解析(2)M为PB的中点(3)AM与平面PCD不平行
(I)证明:依题意知:

 
(II)由(I)知平面ABCD
∴平面PAB⊥平面ABCD.
在PB上取一点M,作MN⊥AB,则MN⊥平面ABCD,
设MN=h

 
要使
即M为PB的中点. 


 
  (III)以A为原点,AD、AB、AP所在直线为x,y,z轴,

   建立如图所示的空间直角坐标系
则A(0,0,0),B(0,2,0),
C(1,1,0),D(1,0,0),
P(0,0,1),M(0,1,
由(I)知平面,则
的法向量。
为等腰

因为
所以AM与平面PCD不平行.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)如图,四面体中,的中点,.(Ⅰ)求证:平面;(Ⅱ)求异面直线所成角的大小;

(Ⅲ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,平面平面ABCDABCD为正方形,是直角三角形,且E、F、G分别是线段PAPDCD的中点.
(1)求证:∥面EFC
(2)求异面直线EGBD所成的角;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥的底面为正方形,底面上的点.
(1)求证:无论点上如何移动,都有
(2)若//平面,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示:四棱锥P-ABCD底面一直角梯形,BA⊥AD,CD⊥AD,CD=2AB,PA⊥底面ABCD,E为PC的中点.
(1)证明:EB∥平面PAD;
(2)若PA=AD,证明:BE⊥平面PDC;
(3)当PA=AD=DC时,求二面角E-BD-C的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

5u如图,平行四边形中,,正方形所在的平面和平面垂直,的中点,的交点.

⑴求证:平面
⑵求证:平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正方体中,分别是棱的中点.
试画出平面与平面的交线.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为互不重合的平面,为互不重合的直线,给出下列四个命题:]
①若
②若,则
③若  
④若   
其中所有正确命题的序号是(    )
A.①②B.①③C.③④D.①③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下面的集合中三个元素不可能分别是长方体(一只“盒子”) 的三条外对角线的长度(一条外对角线就是这盒子的一个矩形面的一条对角线) 是(     )
A..B..C..D..

查看答案和解析>>

同步练习册答案