精英家教网 > 高中数学 > 题目详情

【题目】对正整数n,记In={1,2,3,...,n},Pn={|m∈In,k∈In}.

(1)求集合P7中元素的个数;

(2)若Pn的子集A中任意两个元素之和不是整数的平方,则称A为“稀疏集”.求n的最大值,使Pn能分成两个不相交的稀疏集的并集.

【答案】(1)46;(2)n的最大值为14.

【解析】试题分析:(1)对于集合P7,有n=7.当k=4时,根据Pn中有3个数与In={1,2,3…,n}中的数重复,由此求得集合P7中元素的个数.
(2)先用反证法证明证当n≥15时,Pn不能分成两个不相交的稀疏集的并集,再证P14满足要求,从而求得n的最大值.

试题解析:

(1)对于集合P7 ,有n=7.当k=4时,Pn={|m∈In,k∈In}中有3个数(1,2,3)与

In={1,2,3,n}中的数重复,由此求得集合P7中元素的个数为 7×7﹣3=46.

(2)先证当n≥15时,Pn不能分成两个不相交的稀疏集的并集.否则,设A和B为两个不相交的稀疏集,使A∪B=PnIn

不妨设1∈A,则由于1+3=22,∴3A,即3∈B.同理可得,6∈A,10∈B.又推出15∈A,但1+15=42

这与A为稀疏集相矛盾.

再证P14满足要求.当k=1时,P14={|m∈I14,k∈I14}=I14,可以分成2个稀疏集的并集.

事实上,只要取A1={1,2,4,6,9,11,13},B1={3,5,7,8,10,12,14},则A1和B1都是稀疏集,且A1∪B1=I14

当k=4时,集合{|m∈I14}中,除整数外,剩下的数组成集合{,…,},可以分为下列2个稀疏集的并:

A2={},B2={}.

当k=9时,集合{|m∈I14}中,除整数外,剩下的数组成集合{,,},

可以分为下列2个稀疏集的并:

A3={},B3={}.

最后,集合C═{|m∈I14,k∈I14,且k≠1,4,9 }中的数的分母都是无理数,

它与Pn中的任何其他数之和都不是整数,

因此,令A=A1∪A2∪A3∪C,B=B1∪B2∪B3,则A和B是不相交的稀疏集,且A∪B=P14.

综上可得,n的最大值为14.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若抛物线y2=2px(p>0)上一点到焦点和抛物线对称轴的距离分别为10和6,则抛物线方程为(
A.y2=4x
B.y2=36x
C.y2=4x或y2=36x
D.y2=8x或y2=32x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

①如果不同直线都平行于平面,则一定不相交;

②如果不同直线都垂直于平面,则一定平行;

③如果平面互相平行,若直线,直线,则

④如果平面互相垂直,且直线也互相垂直,若,则

其中正确的个数为( )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的定义域为如果存在实数 使得对任意满足恒成立,则称为广义奇函数.

(Ⅰ)设函数,试判断是否为广义奇函数并说明理由;

(Ⅱ)设函数其中常数 证明是广义奇函数,并写出的值

是定义在上的广义奇函数且函数的图象关于直线为常数)对称试判断是否为周期函数若是,求出的一个周期,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M与两定点A、B的距离之比为λ(λ>0,λ≠1),那么点M的轨迹就是阿波罗尼斯圆.下面,我们来研究与此相关的一个问题.已知圆:x2+y2=1和点 ,点B(1,1),M为圆O上动点,则2|MA|+|MB|的最小值为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆心在直线上的圆经过点,但不经过坐标原点,并且直线与圆相交所得的弦长为4.

(1)求圆的一般方程;

(2)若从点发出的光线经过轴反射,反射光线刚好通过圆的圆心,求反射光线所在的直线方程(用一般式表达).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点(0,2)的直线l与中心在原点,焦点在x轴上且离心率为 的椭圆C相交于A、B两点,直线 过线段AB的中点,同时椭圆C上存在一点与右焦点关于直线l对称.
(1)求直线l的方程;
(2)求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正四棱锥中, 是正方形, 是正方形的中心, 底面 的中点.

(I)证明: 平面

(II)证明:平面平面

(III)已知: ,求点到面的距离.

查看答案和解析>>

同步练习册答案