精英家教网 > 高中数学 > 题目详情
2.已知f(x)是定义在R上的奇函数,当0≤x≤1时,f(x)=x2,当x>0时,f(x+1)=f(x)+f(1),若直线y=kx与函数y=f(x)的图象恰有7个不同的公共点,则实数k的取值范围为(2$\sqrt{2}$-1,2$\sqrt{6}$-4).

分析 本题通过奇函数特征得到函数图象经过原点,且关于原点对称,利用f(x+1)=f(x)+f(1)得到函数类似周期性特征,从而可以画出函数的草图,再利用两个临界状态的研究,得到k的取值范围

解答 解:∵当0≤x≤1时,f(x)=x2
∴f(1)=1.
∵当x>0时,f(x+1)=f(x)+f(1),
∴f(x+1)=f(x)+1,
∴当x∈[n,n+1],n∈N*时,
f(x+1)=f(x-1)+2=f(x-2)+3=…=f(x-n)+n+1=(x-n)2+n,
∵函数f(x)是定义在R上的奇函数,
∴函数图象经过原点,且关于原点对称.
∵直线y=kx与函数y=f(x)的图象恰有7个不同的公共点,
∴当x>0时,直线y=kx与函数y=f(x)的图象恰有3个不同的公共点,
∴由x>0时f(x)的图象可知:
直线y=kx与函数y=f(x)的图象相切位置在x∈[1,2]时,直线y=kx与函数y=f(x)的图象恰有5个不同的公共点,
直线y=kx与函数y=f(x)的图象相切位置在x∈[2,3]时,直线y=kx与函数y=f(x)的图象恰有9个不同的公共点,
∴直线y=kx与函数y=f(x)的图象位置情况介于上述两种情况之间.
∵当x∈[1,2]时,
由$\left\{\begin{array}{l}{y=kx}\\{y=(x-1)^{2}+1}\end{array}\right.$得:k=2$\sqrt{2}$-2
x2-(k+2)x+2=0,
令△=0,得:k=2$\sqrt{2}$-2.
由$\left\{\begin{array}{l}{y=kx}\\{y=(x-2)^{2}+2}\end{array}\right.$得:
x2-(k+4)x+6=0,
令△=0,得:k=2$\sqrt{6}$-4.
∴k的取值范围为(2$\sqrt{2}$-1,2$\sqrt{6}$-4).
故答案为:(2$\sqrt{2}$-2,2$\sqrt{6}$-4).

点评 本题考查抽象函数及其应用,着重考查函数的零点与方程根的关系,考查函数的对称性、周期性、奇偶性的综合应用,考查转化思想与作图能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在自变量的同一变化过程中,下列命题中正确的是(  )
A.若$\underset{lim}{x→{x}_{0}}$f(x)和$\underset{lim}{x→{x}_{0}}$g(x)都不存在,则$\underset{lim}{x→{x}_{0}}$[f(x)+g(x)]不存在
B.若$\underset{lim}{x→{x}_{0}}$f(x)和$\underset{lim}{x→{x}_{0}}$g(x)都不存在,则$\underset{lim}{x→{x}_{0}}$[f(x)g(x)]不存在
C.$\underset{lim}{x→{x}_{0}}$$\frac{f(x)}{g(x)}$存在,且$\underset{lim}{x→{x}_{0}}$[g(x)]=0,则$\underset{lim}{x→{x}_{0}}$f(x)=0
D.若$\underset{lim}{x→{x}_{0}}$|f(x)|=|A|,$\underset{lim}{x→{x}_{0}}$f(x)=A.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=secx?sinx的最小正周期T=π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{2}$=1的焦点在x轴上,以椭圆右顶点为焦点的抛物线标准方程为y2=16x.
(1)求椭圆C的离心率
(2)若动直线l的斜率为$-\frac{{\sqrt{2}}}{2}$,且与椭圆C交于不同的两点M、N,已知点Q$(-\sqrt{2},0)$,求$\overrightarrow{QM}•\overrightarrow{QN}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.函数f(x)对任意x∈R都有f(x)+f(1-x)=$\frac{1}{2}$.
(1)数列{an}满足:an=f(0)+f($\frac{1}{n}$)+f($\frac{2}{n}$)+…+f($\frac{n-1}{n}$)+f(1),求an
(2)令bn=$\frac{4}{4{a}_{n}-1}$,Tn=b${\;}_{1}^{2}$+b${\;}_{2}^{2}$+b${\;}_{3}^{2}$+…+b${\;}_{n}^{2}$,Sn=32-$\frac{16}{n}$,试比较Tn和Sn的大小;
(3)在(1)的条件下,设bn=4an-1,cn=bnqn-1(q≠0,n∈N*),求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.一个五面体的三视图如图,正视图是等腰直角三角形,侧视图是直角三角形,部分边长如图所示,则此五面体的体积为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设a=log26,b=log412,c=log618,则(  )
A.b>c>aB.a>c>bC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某单位抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,则该代表中奖的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{3}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知f(x)=$\left\{\begin{array}{l}{{x}^{2},x≥0}\\{-{x}^{2},x<0}\end{array}\right.$,若对任意的x≥1有f(x+2m)+mf(x)>0恒成立,则实数m的取值范围是m>-$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案