精英家教网 > 高中数学 > 题目详情
19.如图,正三棱柱ABC-A1B1C1中,底面边长为2,侧楞长为$\sqrt{2}$,D为A1C1中点.
(1)求证:BC1∥平面AB1D;
(2)求证:平面AB1D⊥平面AA1C1C;
(3)求点B到平面AB1D的距离.

分析 (1)连结A1B与AB1交于E,与偶三角形的中位线的性质可得BC1∥DE,再根据直线和平面平行的判定定理,证明BC1∥平面AB1D.
(2)证明B1D⊥平面AA1C1C,即可证明平面AB1D⊥平面AA1C1C;
(3)过点D作DH⊥A1B1,利用平面和平面垂直的性质可得DH⊥平面ABB1A1 ,DH为三棱锥D-ABB1的高,求出VD-ABB1,利用等体积求得结果.

解答 (1)证明:连结A1B与AB1交于E,连结DE,则E为A1B的中点,故DE为△A1BC1的中位线,
∴BC1∥DE.
又DE?平面AB1D,BC1?平面AB1D,
∴BC1∥平面AB1D.(6分)
(2)证明:∵D为A1C1中点,
∴B1D⊥A1C1
∵B1D⊥A1A,A1C1∩A1A=A1
∴B1D⊥平面AA1C1C
∵B1D?平面AB1D,
∴平面AB1D⊥平面AA1C1C
(3)解:过点D作DH⊥A1B1
∵正三棱柱ABC-A1B1C1,∴AA1⊥平面A1B1C1,AA1⊥DH,AA1∩A1B1=A1
∴DH⊥平面ABB1A1.DH为三棱锥D-ABB1的高.
∵${S}_{△AB{B}_{1}}$且DH=A1Dsin60°=$\frac{\sqrt{3}}{2}$,
∴${V}_{D-AB{B}_{1}}$=$\frac{1}{3}$×$\frac{\sqrt{3}}{2}$×2=$\frac{\sqrt{6}}{6}$,
∵${S}_{△A{B}_{1}D}$=$\frac{1}{2}×\sqrt{3}×\sqrt{3}$=$\frac{3}{2}$
∴点B到平面AB1D的距离=$\frac{\frac{\sqrt{6}}{6}×3}{\frac{3}{2}}$=$\frac{\sqrt{6}}{3}$.

点评 本题主要考查直线和平面平行的判定定理的应用,平面和平面垂直的证明,求棱锥的体积,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知数列{an}中,a1=a2=1,且an+2-an=1,则数列{an}的前100项和为(  )
A.2550B.2600C.2651D.2652

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列函数是偶函数的是(  )
A.y=xB.y=2x2C.y=x${\;}^{-\frac{1}{2}}$D.y=x2,x∈[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.${0.01^{-\frac{1}{2}}}-{(-\frac{5}{4})^0}+{7^{{{log}_7}}}^2+[{{{(lg2)}^2}+lg2•lg5+lg5}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若直线nx+my+3m=0被圆x2+y2=r2(r>0)截得的最短弦长为8,则r=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知集合A={x|x<-1或x≥1},B={x|x≤2a或x≥a+1},若(∁RB)⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知命题p:“$\frac{x^2}{2m-1}+\frac{y^2}{2-m}=1$是椭圆的标准方程”,命题q:“$\frac{x^2}{m-1}+\frac{y^2}{m-3}=1$是双曲线的标准方程”.且p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=1g[(1-a2)x2+3(1-a)x+6]值域为R,则实数a的取值范围是(  )
A.(-1,0)B.(-1,-$\frac{5}{11}$)C.[-1,-$\frac{5}{11}$)D.[-1,-$\frac{5}{11}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=ln$\frac{1}{{x}^{2}+2x-8}$的单调减区间为(2,+∞).

查看答案和解析>>

同步练习册答案