【题目】已知数列的前项和为,且,.
(1)若数列是等差数列,且,求实数的值;
(2)若数列满足,且,求证:数列是等差数列;
(3)设数列是等比数列,试探究当正实数满足什么条件时,数列具有如下性质:对于任意的,都存在使得,写出你的探求过程,并求出满足条件的正实数的集合.
【答案】(1);(2)证明见解析;(3)
【解析】
(1)首先根据,,求出,再计算即可.
(2)首先由得到,由且,得到数列的通项公式,即可证明数列是等差数列.
(3)有题意得:,然后对分类讨论,可知当,,时,数列不具有性质.当时,对任意,,都有,即当时,数列具有性质.
(1)设等差数列的公差为,由,,得,
解得,则,
所以.
(2)因为,
所以,
解得,
因为,,,
当为奇数时,.
当为偶数时,.
所以对任意,都有.
当时,,即数列是等差数列.
(3)解:由题意,是等比数列,.
①当时,,
所以对任意,都有,
因此数列不具有性质.
②当时,,.
所以对任意,都有,
因此数列不具有性质.
③当时,.
,
.
取(表示不小于的最小整数),
则,.
所以对于任意,.
即对于任意,都不在区间内,
所以数列不具有性质.
④当时,,且,
即对任意,,都有,
所以当时,数列具有性质.
综上,使得数列具有性质的正实数的集合为.
科目:高中数学 来源: 题型:
【题目】设椭圆的左焦点为,下顶点为,上顶点为,是等边三角形.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设直线,过点且斜率为的直线与椭圆交于点 异于点,线段的垂直平分线与直线交于点,与直线交于点,若.
(ⅰ)求的值;
(ⅱ)已知点,点在椭圆上,若四边形为平行四边形,求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx(b∈R),g(x).
(1)讨论函数f(x)的单调性
(2)是否存在实数b使得函数y=f(x)在x∈(,+∞)上的图象存在函数y=g(x)的图象上方的点?若存在,请求出最小整数b的值,若不存在,请说明理由.(参考数据ln2=0.6931,1.6487)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分13分)
某产品按行业生产标准分成8个等级,等级系数X依次为1,2,……,8,其中X≥5为标准A,X≥3为标准B,已知甲厂执行标准A生产该产品,产品的零售价为6元/件;乙厂执行标准B生产该产品,产品的零售价为4元/件,假定甲、乙两厂得产品都符合相应的执行标准
(I)已知甲厂产品的等级系数X1的概率分布列如下所示:
且X1的数字期望EX1=6,求a,b的值;
(II)为分析乙厂产品的等级系数X2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:
3 5 3 3 8 5 5 6 3 4
6 3 4 7 5 3 4 8 5 3
8 3 4 3 4 4 7 5 6 7
用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X2的数学期望.
在(I)、(II)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.
注:(1)产品的“性价比”=;
(2)“性价比”大的产品更具可购买性.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为;直线的参数方程为(为参数),直线与曲线分别交于,两点.
(1)写出曲线的直角坐标方程和直线的普通方程;
(2)若点的极坐标为,,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,离心率为,且在椭圆上运动,当点恰好在直线l:上时,的面积为.
(1)求椭圆的方程;
(2)作与平行的直线,与椭圆交于两点,且线段的中点为,若的斜率分别为,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某人准备投资1200万元办一所中学,为了考虑社会效益和经济效益,对该地区教育市场进行调查,得出一组数据,列表如下(以班级为单位).
市场调查表:
班级学生数 | 配备教师数 | 硬件建设费(万元) | 教师年薪(万元) | |
初中 | 50 | 2.0 | 28 | 1.2 |
高中 | 40 | 2.5 | 58 | 1.6 |
根据物价部门的有关规定:初中是义务教育阶段,收费标准适当控制,预计除书本费、办公费外,初中每人每年可收取600元.高中每人每年可收取1500元.因生源和环境等条件限制,办学规模以20至30个班为宜(含20个班与30个),教师实行聘任制.初、高中教育周期均为三年,设初中编制为个班,高中编制为个班,请你合理地安排招生计划,使年利润最大.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com