精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知的方程为,平面内两定点.当的半径取最小值时:

(1)求出此时的值,并写出的标准方程;

(2)在轴上是否存在异于点的另外一个点,使得对于上任意一点,总有为定值?若存在,求出点的坐标,若不存在,请说明你的理由;

(3)在第(2)问的条件下,求的取值范围.

【答案】(1),(2)F的坐标为,定值为2(3)

【解析】分析:(1)运用配方和二次函数的最值求法,即可得到所求圆的方程;(2)设P(x,y),定点F(m,0)(m为常数),运用两点的距离公式,化简整理,再由恒等式的性质,即可得到定点F的坐标和的定值;(3)由上问可知对于⊙C上任意一点P总有,可得||PG|﹣|PF||≤|FG|(当P、F、G三点共线时取等号),又,故2|PG|﹣|PE|[﹣5,5].化简μ的关系式,结合对勾函数的单调性,即可得到所求范围.

详解:

(1)C的标准式为:

时,⊙C的半径取最小值,此时⊙C的标准方程为

(2)设,定点m为常数),则

,代入上式,

得:

由于λ取值与x无关,∴舍去).

此时点F的坐标为

(3)由上问可知对于⊙C上任意一点P总有

(当PFG三点共线时取等号),

,故

,则

根据对勾函数的单调性可得:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法:第二象限角比第一象限角大;是第二象限角,则三角形的内角是第一象限角或第二象限角;函数是最小正周期为的周期函数;△ABC中,若,A>B.其中正确的是___________ (写出所有正确说法的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的中心在原点,对称轴为坐标轴,一条渐近线方程为,右焦点,双曲线的实轴为为双曲线上一点(不同于),直线分别与直线交于两点.

)求双曲线的方程.

)证明为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】)设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是增函数,则f(x)、g(x)、h(x)均是增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是(  )
A.①和②均为真命题
B.①和②均为假命题
C.①为真命题,②为假命题
D.①为假命题,②为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面内三个向量:.

(Ⅰ)若,求实数的值;

(Ⅱ)设,且满足,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一块正方形菜地 , 所在直线是一条小河,收货的蔬菜可送到 点或河边运走。于是,菜地分为两个区域 ,其中 中的蔬菜运到河边较近, 中的蔬菜运到 点较近,而菜地内 的分界线 上的点到河边与到 点的距离相等,现建立平面直角坐标系,其中原点 的中点,点 的坐标为(1,0),如图

(1)求菜地内的分界线 的方程
(2)菜农从蔬菜运量估计出 面积是 面积的两倍,由此得到 面积的“经验值”为 。设 上纵坐标为1的点,请计算以 为一边、另一边过点 的矩形的面积,及五边形 的面积,并判断哪一个更接近于 面积的经验值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市场调查发现,某种产品在投放市场的30天中,其销售价格P(元)和时间t(天)(t∈N)的关系如图所示

(1)写出销售价格P(元)和时间t(天)的函数解析式;
(2)若日销售量Q(件)与时间t(天)的函数关系是Q=﹣t+40(0≤t≤30,t∈N),求该商品的日销售金额y(元)与时间t(天)的函数解析式;
(3)问该产品投放市场第几天时,日销售金额最高?最高值为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=sinx﹣ cosx的图象可由函数y=sinx+ cosx的图象至少向右平移个单位长度得到.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差不为0的等差数列{an}的首项a1a(a∈R).设数列的前n项和为Sn,且成等比数列.

(1)求数列{an}的通项公式及Sn

(2).n≥2时,求AnBn

查看答案和解析>>

同步练习册答案