精英家教网 > 高中数学 > 题目详情
18.设全集U={x∈N|-2≤x≤7},集合A={1,2,4,5},B={1,2,3,7},则∁UA∩B=(  )
A.{1,2,3}B.{0,3,7}C.{3,7}D.{1,3,7}

分析 由已知中全集U={x∈N|-2≤x≤7},A={1,2,4,5},B={1,2,3,7},根据补集的性质及运算方法,我们求出CUA再根据交集的运算方法,即可求出答案.

解答 解:∵全集U={x∈N|-2≤x≤7}={-2,-1,0,1,2,3,4,5,6,7},A={1,2,4,5},
∴CUA={-2,-1,0,3,6,7}
又∵B={1,2,3,7},
∴∁UA∩B={3,7}
故选:C.

点评 本题考查的知识点是交、并、补的混合运算,其中将题目中的集合用列举法表示出来,是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,F1,F2为左,右焦点,过F2的直线与椭圆交于A,B两点,若△F1AB面积的最大值为6,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等差数列{an}的前n项和为Sn,且满足:a1+a2=0,S4=8
(1)求数列{an}的通项公式;
(2)求数列{$\frac{{a}_{n}}{{3}^{n}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是AD、CD、DD1的中点.
(I)证明:平面A1BC1∥平面EFG;
(Ⅱ)证明:平面BB1D1⊥平面EFG.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知(1-2x)2014=a0+a1x+a2x2+…+a2014x2014,则$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…$\frac{{a}_{2014}}{{2}^{2014}}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,已知(a2-b2)sin(A+B)=(a2+b2)sin(A-B),(A≠B),则△ABC是(  )
A.等腰三角形B.直角三角形
C.等腰直角三角形D.等腰或直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知实数x>0,则3x+$\frac{3}{x}$取最小值时当且仅当x为(  )
A.±1B.-1C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夹角为$\frac{2π}{3}$的单位向量,若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆C:x2+y2-x+2y=0和直线l:x-y+1=0
(1)试判断直线l与圆C之间的位置关系,并证明你的判断;
(2)求与圆C关于直线l对称的圆的方程.

查看答案和解析>>

同步练习册答案