精英家教网 > 高中数学 > 题目详情
19.已知等差数列{an}的前n项和为Sn,且a4=5,S9=54.
(1)求数列{an}的通项公式与Sn
(2)若bn=$\frac{1}{{S}_{n}}$,求数列{bn}的前n项和.

分析 (1)设等差数列{an}的公差为d,利用等差数列的通项公式及其前n项和公式即可得出.
(2)bn=$\frac{1}{{S}_{n}}$$\frac{2}{n(n+3)}$=$\frac{1}{n}-\frac{1}{n+3}$,利用“裂项求和”即可得出.

解答 解:(1)设等差数列{an}的公差为d,∵a4=5,S9=54,
∴$\left\{\begin{array}{l}{{a}_{1}+3d=5}\\{9{a}_{1}+\frac{9×8}{2}d=54}\end{array}\right.$,d=1,a1=2.
∴an=2+n-1=n+1,
Sn=$\frac{n(n+3)}{2}$.
(2)bn=$\frac{1}{{S}_{n}}$$\frac{2}{n(n+3)}$=$\frac{1}{n}-\frac{1}{n+3}$,
数列{bn}的前n项和=$(1-\frac{1}{4})$+$(\frac{1}{2}-\frac{1}{5})$+$(\frac{1}{3}-\frac{1}{6})$+$(\frac{1}{4}-\frac{1}{7})$+…+$(\frac{1}{n-3}-\frac{1}{n})$+$(\frac{1}{n-2}-\frac{1}{n+1})$+$(\frac{1}{n-1}-\frac{1}{n+2})$+$(\frac{1}{n}-\frac{1}{n+3})$
=$1+\frac{1}{2}+\frac{1}{3}$-$\frac{1}{n+1}-$$\frac{1}{n+2}$-$\frac{1}{n+3}$
=$\frac{11}{6}$-$\frac{1}{n+1}-$$\frac{1}{n+2}$-$\frac{1}{n+3}$.

点评 本题考查了等差数列的通项公式及其前n项和公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数y=f(x)是定义在R上且周期为4的奇函数,若-2<x≤-1时,f(x)=2cos$\frac{π}{2}$x+1,求当2≤x≤3时,函数y=f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,|$\overrightarrow{a}$+$\overrightarrow{b}$|=1,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列函数的值域.
(1)y=3-2sin2x;
(2)y=|sinx|+sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.若x∈[-$\frac{π}{3}$,$\frac{π}{4}$],求函数y=$\frac{1}{co{s}^{2}x}$+2tanx+1的最值及相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设O是△ABC所在平面上一点,H是△ABC的垂心,并且$\overrightarrow{OH}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$,∠A=60°,∠B=45°,|$\overrightarrow{BC}$|=2$\sqrt{3}$.
(1)求△ABC的外接圆半径的长;
(2)求$\overrightarrow{|OH|}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知sin75°=$\frac{\sqrt{6}-\sqrt{2}}{4}$,求cos15°,cos165°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.掷2个骰子,至少有一个1点的概率为$\frac{11}{36}$.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,∠ACB=90°,D为BC的中点,PA⊥平面ABC,如果PB,PC与平面ABC所成角分别为30°、60°,那么PD与平面ABC所成角的大小为45°.

查看答案和解析>>

同步练习册答案