精英家教网 > 高中数学 > 题目详情
5.在棱长为2的正方体ABCD-A1B1C1D1中任取一点M,则满足∠AMB>90°的概率为(  )
A.$\frac{π}{24}$B.$\frac{π}{12}$C.$\frac{π}{8}$D.$\frac{π}{6}$

分析 在棱长为2的正方体ABCD-A1B1C1D1中任取一点M,满足∠AMB>90°的区域的面积为半径为1的球体的$\frac{1}{4}$,以体积为测度,即可得出结论.

解答 解:在棱长为2的正方体ABCD-A1B1C1D1中任取一点M,满足∠AMB>90°的区域的面积为半径为1的球体的$\frac{1}{4}$,体积为$\frac{1}{4}•\frac{4}{3}•π•{1}^{3}$=$\frac{π}{3}$,
∴所求概率为$\frac{\frac{π}{3}}{8}$=$\frac{π}{24}$,
故选:A.

点评 本题考查几何概型的概率计算,关键是确定满足条件的区域,利用体积比值求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.对$?x∈(\;0\;,\;\frac{1}{3}\;)$,23x≤logax+1恒成立,则实数a的取值范围是(  )
A.$(\;0\;,\;\frac{2}{3}\;)$B.$(\;0\;,\;\frac{1}{2}\;]$C.$[\;\frac{1}{3}\;,\;1\;)$D.$[\;\frac{1}{2}\;,\;1\;)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若一个圆柱的正视图与其侧面展开图是相似矩形,则这个圆柱的全面积与侧面积之比为(  )
A.$1+\sqrt{π}$B.1+$\frac{1}{{\sqrt{π}}}$C.$1+\frac{1}{{\sqrt{2π}}}$D.$1+\frac{1}{{2\sqrt{π}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知定义在R上的偶函数f(x),满足f(x+4)=f(x)+f(2),且0≤x≤2时,f(x)=$\left\{\begin{array}{l}-12{x^2}+12x,x∈[{0,1}]\\-4{x^2}+12x-8,x∈(1,2]\end{array}$,若函数g(x)=f(x)-a|x|(a≠0),在区间[-3,3]上至多有9个零点,则a=20-8$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|x-2|+|2x+1|.
(Ⅰ)解不等式f(x)≥7;
(Ⅱ)若关于x的不等式f(x)+|x-2|>a恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.为治疗某种流行疾病,医生让某患者服用一种抗生素,规定每天早上八时服一片,现知该药片每片含药量为128毫克,他的肾脏每天可从体内滤出这种药的50%,问:
(1)经过多少天,该患者所服的第一片药在他体内残留不超过1毫克?
(2)如果抵抗这种疾病要求体内的药物含量不低于25毫克,该患者自服药起的6天内都能抵抗这种疾病,那么该患者应至少连续服药多少天?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列结论正确的是(  )
A.命题“如果p2+q2=2,则p+q≤2”的否命题是“如果p+q>2,则p2+q2≠2”
B.命题p:?x∈[0,1],ex≥1,命题q:?x∈R,x2+x+1<0,则p∨q为假
C.“若am2<bm2,则a<b”的逆命题为真命题
D.若${(\sqrt{x}-\frac{1}{{2\root{3}{x}}})^n}$的展开式中第四项为常数项,则n=5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,边长为2的等边三角形ABC中,D为BC的中点,将△ABC沿AD翻折成直二面角B-AD-C,点E,F分别是AB,AC的中点.
(1)求证:BC∥平面DEF;
(2)在线段AB上是否存在一点P,使CP⊥DF?若存在,求出$\frac{AP}{PB}$的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=ax4+bx2+c的图象经过点(0,1),且在x=1处的切线方程是y=x-2
(Ⅰ)求实数a,b,c的值;
(Ⅱ)求y=f(x)的单调递增区间.

查看答案和解析>>

同步练习册答案