精英家教网 > 高中数学 > 题目详情

【题目】(请选做其中一题)

(1)请推导等差数列及等比数列前项和公式;

(2)如果你在海上航行,请设计一种测量海上两个小岛之间距离的方法并作图说明;

(3)某工厂要建造一个长方形无盖贮水池,其容积为4800立方米,深为3米,如果池底每平米的造价为150元,池壁每平米造价为120元,怎样设计水池能使造价最低?最低总造价是多少?

【答案】当水池的底面是边长为40m的正方形时,水池的总造价最低,最低总造价是297600元

【解析】

试题分析:此题首先需要由实际问题向数学问题转化,即建立函数关系式,然后求函数的最值,其中用到了均值不等式定理

试题解析:设水池底面一边的长度为xm,水池的总造价为y元,则底面积为

池底的造价为1600×150=240000元,

则y=240000+720(x+ 240000+720×2

=240000+720×2×40=297600,

当且仅当,即x=40时,y有最小值297600(元)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若定义在D上的函数f(x)满足:对任意x∈D,存在常数M>0,都有-M<f(x)<M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界。

(Ⅰ)判断函数f(x)=-2x+2,x∈[0,2]是否是有界函数,请说明理由;

(Ⅱ)若函数f(x)=1++,x∈[0,+∞)是以3为上界的有界函数,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设有一条光线从射出,并且经轴上一点反射.

(1)求入射光线和反射光线所在的直线方程(分别记为);

(2)设动直线,当点的距离最大时,求所围成的三角形的内切圆(即:圆心在三角形内,并且与三角形的三边相切的圆)的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线)与椭圆相交所得的弦长为

)求抛物线的标准方程;

)设上异于原点的两个不同点,直线的倾斜角分别为,当变化且为定值)时,证明:直线恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,由三棱柱和四棱锥构成的几何体中, 平面 ,平面平面

(Ⅰ)求证:

(Ⅱ)若为棱的中点,求证: 平面

(Ⅲ)在线段上是否存在点,使直线与平面所成的角为?若存在,求的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f (x)=lg(ax2+2x+1)

(1)若函数f (x)的定义域为R,求实数a的取值范围;

(2)若函数f (x)的值域为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,且,数列为等差数列,且 .

(1)求数列的通项公式;

(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,过椭圆右顶点和上顶点的直线与圆相切.

(1)求椭圆的方程;

(2)设是椭圆的上顶点,过点分别作直线交椭圆两点,设这两条直线的斜率分别为,且,证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,设倾斜角为的直线为参数与曲线为参数相交于不同的两点

1,求线段中点的坐标;

2,其中,求直线的斜率

查看答案和解析>>

同步练习册答案