已知函数,,,其中,且.
⑴当时,求函数的最大值;
⑵求函数的单调区间;
⑶设函数若对任意给定的非零实数,存在非零实数(),使得成立,求实数的取值范围.
⑴-1; ⑵详见解析; ⑶
解析试题分析:⑴令g′(x)=0求出根,判断g′(x)在左右两边的符号,得到g(x)在上单调递增,在上单调递减,可知g(x)最大值为g(1),并求出最值;
⑵解不等式得出函数的单调增区间,导数小于零求出单调递减区间,注意单调区间与定义域取交集;
⑶不等式恒成立就是求函数的最值,注意对参数的讨论.
试题解析:⑴当时, ∴
令,则, ∴在上单调递增,在上单调递减
∴ (4分)
⑵,,()
∴当时,,∴函数的增区间为,
当时,,
当时,,函数是减函数;当时,,函数是增函数.
综上得,当时,的增区间为;
当时,的增区间为,减区间为 (10分)
⑶当,在上是减函数,此时的取值集合;
当时,,
若时,在上是增函数,此时的取值集合;
若时,在上是减函数,此时的取值集合.
对任意给定的非零实数,
①当时,∵在上是减函数,则在上不存在实数(),使得,则,要在上存在非零实数(),使得成立,必定有,∴;
②当时,在时是单调函数,则
科目:高中数学 来源: 题型:解答题
定义在上的函数同时满足以下条件:
①在(0,1)上是减函数,在(1,+∞)上是增函数;
②是偶函数;
③在x=0处的切线与直线y=x+2垂直.
(1)求函数=的解析式;
(2)设g(x)=,若存在实数x∈[1,e],使<,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
甲、乙两地相距1000,货车从甲地匀速行驶到乙地,速度不得超过80,已知货车每小时的运输成本(单位:元)由可变成本和固定成本组成,可变成本是速度平方的倍,固定成本为a元.
(1)将全程运输成本y(元)表示为速度v()的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,货车应以多大的速度行驶?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com