精英家教网 > 高中数学 > 题目详情
6、对于给定的函数f(x)=2x-1,有下列四个结论:
①f(x) 的图象关于原点对称;②f(x) 在R上是增函数;
③f(x) 的值域为[-1,+∞);④f(|x|) 有最小值为0.其中正确结论的序号是(  )
分析:根据f(x)=2x-1的图象是由f(x)=2x题的图象向下平移一个单位得到的,作出其图象,由图象来说明.
解答:解:如图所示:①不关于原点对称,不正确
③函数的值域为(-1,+∞),不正确,
这样只要有①③的选项都不能选,
故选C.
点评:本题主要考查基本函数的图象变换及考查学生的作图、识图和用图来研究函数性质的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在实数集R上的函数f(x),如果存在函数g(x)=Ax+B(A、B为常数),使得f(x)≥g(x)对一切实数x都成立,那么称g(x)为函数f(x)的一个承托函数.给出如下四个命题:
①对于给定的函数f(x),其承托函数可能不存在,也可能有无数个;
②定义域和值域都是R的函数f(x)不存在承托函数;
③g(x)=2x为函数f(x)=|3x|的一个承托函数;
g(x)=
12
x
为函数f(x)=x2的一个承托函数.
其中正确的命题有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x),如果存在函数g(x)=kx+b(k,b为常数),使得f(x)≥g(x)对一切实数x都成立,则称g(x)是函数f(x)的一个“亲密函数”,现有如下的命题:
(1)对于给定的函数f(x),其“亲密函数”有可能不存在,也可能有无数个;
(2)g(x)=2x是f(x)=2x,的一个“亲密函数”;
(3)定义域与值域都是R的函数f(x),不存在“亲密函数”.
其中正确的命题是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的二次函数R(x)=ax2+bx+c满足2R(-x)-2R(x)=0,且R(x)的最小值为0,函数h(x)=lnx,又函数f(x)=h(x)-R(x).
(I)求f(x)的单调区间;  
(II)当a≤
1
2
时,若x0∈[1,3],求f(x0)的最小值;
(III)若二次函数R(x)图象过(4,2)点,对于给定的函数f(x)图象上的点A(x1,y1),当x1=
3
2
时,探求函数f(x)图象上是否存在点B(x2,y2)(x2>2),使A、B连线平行于x轴,并说明理由.(参考数据:e=2.71828…)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于给定的函数f(x)=2x-2-x,有下列四个结论:
①f(x)的图象关于原点对称;           ②f(x)在R上不是增函数;
③f(|x|)的图象关于y轴对称;          ④f(|x|)的最小值为0.
其中正确的结论是
①③④
①③④
(填写正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的二次函数R(x)=ax2+bx(a>0)是偶函数,函数f(x)=2lnx-R(x).
(I)求f(x)的单调区间;  
(II)当a≤1时,若x0∈[1,2],求f(x0)的最大值;
(III)若二次函数R(x)图象过(1,1)点,对于给定的函数f(x)图象上的点A(x1,y1),当x1=
1e
时,探求函数f(x)图象上是否存在点B(x2,y2)(x2>1),使A、B连线平行于x轴,并说明理由.(参考数据:e=2.71828…)

查看答案和解析>>

同步练习册答案