精英家教网 > 高中数学 > 题目详情
已知无穷数列{an}的各项均为正整数,Sn为数列{an}的前n项和.
(Ⅰ)若数列{an}是等差数列,且对任意正整数n都有Sn2=(Sn)2成立,求数列{an}的通项公式;
(Ⅱ)对任意正整数n,从集合{a1,a2,…,an}中不重复地任取若干个数,这些数之间经过加减运算后所得数的绝对值为互不相同的正整数,且这些正整数与a1,a2,…,an一起恰好是1至Sn全体正整数组成的集合.
(ⅰ)求a1,a2的值;
(ⅱ)求数列{an}的通项公式.
考点:数列与函数的综合
专题:综合题,点列、递归数列与数学归纳法
分析:(1)设公差为d,则有Sn=na1+
n(n+1)
2
d=n[
d
2
n+(a1-
d
2
)
],由已知可得[
d
2
n2+(a1-
d
2
)]
=[
d
2
n+(a1-
d
2
)]2
,即可解得数列{an}的通项公式;
(2)(i)记An={1,2,…Sn},显然a1=S1=1,对于S2=a1+a2=1+a2,有A2={1,2,…S2}={1,a2,1+a2,|1-a2|}={1,2,3,4},即可解得a2的值.
(ii)由题意可知,Sn+1=Sn+(2Sn+1)=3Sn+1,又Sn+1+
1
2
=3(Sn+
1
2
),可得Sn=(S1+
1
2
)•3n-1-
1
2
=
1
2
•3n-
1
2
,即可求得an=Sn-Sn-1=3n-1
解答: (16分)
解:(1)设无穷等差数列{an}的公差为d,
则:Sn=na1+
n(n+1)
2
d=n[
d
2
n+(a1-
d
2
)
],
所以:Sn2=n2[
d
2
n2+(a1-
d
2
)]
(Sn)2=n2[
d
2
n+(a1-
d
2
)]2

则:[
d
2
n2+(a1-
d
2
)]
=[
d
2
n+(a1-
d
2
)]2

所以:
d
2
=
d2
4
a1-
d
2
=(a1-
d
2
)2
d(a1-
d
2
)=0
则an=1或an=2n-1,
(2)(i)记An={1,2,…Sn},显然a1=S1=1,
对于S2=a1+a2=1+a2
有A2={1,2,…S2}={1,a2,1+a2,|1-a2|}={1,2,3,4},
故1+a2=4,所以a2=3,
(ii)由题意可知,集合{a1,a2,…an}按上述规则,共产生Sn个正整数.而集合{a1,a2,…an,an+1}按上述规则产生的Sn+1个正整数中,除1,2,…Sn这Sn个正整数外,
还有an+1,an+1+i,|an+1-i|(i=1,2,…Sn),共2Sn+1个数.所以,Sn+1=Sn+(2Sn+1)=3Sn+1,
又Sn+1+
1
2
=3(Sn+
1
2
),
所以Sn=(S1+
1
2
)•3n-1-
1
2
=
1
2
•3n-
1
2

当n≥2时,an=Sn-Sn-1=
1
2
3n-
1
2
-(
1
2
3n-1-
1
2
)
=3n-1而a1=1也满足an=3n-1
所以,数列{an}的通项公式是an=3n-1
点评:本题主要考查了等差数列通项公式的求法,考查了数列与函数的综合应用,考查计算能力和转化思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知复数z=(1-sinθ)+icosθ(θ∈[
π
2
,π]),则|z|等于(  )
A、cos
θ
2
-sin
θ
2
B、sin
θ
2
-cos
θ
2
C、
2
(cos
θ
2
-sin
θ
2
)
D、
2
(sin
θ
2
-cos
θ
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=∠ACD=90°,AB=AC=AE=2ED=2a,F是BC的中点.
(1)求证:DF∥平面EAB;
(2)设动点P从F出发,沿棱BC,CD按照F→C→D的线路运动到点D,求这一运动过程中形成的三棱锥P-EAB体积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两所学校高二年级分别有1200人,1000人,为了了解两所学校全体高二年级学生在该地区四校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:
甲校:
分组[70,80)[80,90)[90,100)[100,110)
频数34815
分组[110,120)[120,130)[130,140)[140,150]
频数15x32
乙校:
分组[70,80)[80,90)[90,100)[100,110)
频数1289
分组[110,120)[120,130)[130,140)[140,150]
频数1010y3
(Ⅰ)计算x,y的值;
(Ⅱ)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率;
(Ⅲ)若规定考试成绩在[140,150]内为特优,甲、乙两所学校从抽取的5张特优试卷中随机抽取两张进行张贴表扬,求这两张试卷来自不同学校的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

在长方体ABCD-A1B1C1D1中,AB=BC=2,过A1、C1、B三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD-A1C1D1,且这个几何体的体积为10.
(Ⅰ)求棱AA1的长;
(Ⅱ)若A1C1的中点为O1,求异面直线BO1与A1D1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|2x-1|,则g(x)=f(f(x))+lnx在区间(0,1)上的零点的个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,c是素数,记x=b+c-a,y=c+a-b,z=a+b-c,当z2=y,
x
-
y
=2时,a,b,c能否构成三角形的三边长?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线y=
4
ex+1
与y轴的交点为A,则曲线在点A处切线的倾斜角大小为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

方程
1
x
-
x
+3=0的解有
 
个(填数字)

查看答案和解析>>

同步练习册答案