精英家教网 > 高中数学 > 题目详情
已知直线l,a,b,平面α,β,γ,则下列命题正确的是(  )
A、若l⊥a,l⊥b,a?α,b?α,则l⊥α
B、若α∩β=a,α⊥β,l⊥a,则l⊥β
C、若α∥β,α∩γ=a,β∩γ=b,则a∥b
D、若α⊥γ,β⊥γ,则α∥β
考点:平面与平面之间的位置关系
专题:综合题,空间位置关系与距离
分析:本题研究线面之间的平行与垂直关系,可由线面垂直的判定与线面平行的判定对四个选项进行判断,得出正确选项.
解答: 解:由线面垂直的判定定理知,一条直线垂直于平面中的两条相交直线时,线与面垂直,本题不能保证a,b,故A不正确;
若α∩β=a,α⊥β,l⊥a,l?α,则l⊥β,故B不正确;
由面面平行的性质定理:若两平面平行,第三个平面与他们都相交,则交线平行,可判断若α∥β,α∩γ=a,β∩γ=b则a∥b为真命题,C正确
若α⊥γ,β⊥γ,则α∥β,此命题不正确,因为垂直于同一平面的两个平面可能平行、相交,不能确定两平面之间是平行关系.
故选:C.
点评:本题主要考查了对线面垂直的判定定理、线面平行的判定定理、面面平行的判定定理、面面平行的性质定理内容的理解和它们的字母符号表达形式,熟记公式推理严密是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若命题甲:x≠2或y≠3;命题乙:x+y≠5,则甲是乙的
 
条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(1)log3(log327);
(2)2log510+log50.25.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个说法:
①当n=0时,y=xn的图象是一个点;
②幂函数的图象都经过点(0,0),(1,1);
③幂函数的图象不可能出现在第四象限;
④幂函数y=xn在第一象限为减函数,则n<0.
其中正确的说法的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列五个命题
①终边相同的角一定相等;  
②cos(-2200°)<0; 
③若α∈(0,2π),则一定有tanα=
sinα
cosα
;  
④如果1弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长为
1
sin0.5

⑤若x≠2kπ+
π
2
,k∈z,则等式
cosx
1-sinx
=
1+sinx
cosx
一定成立.
其中正确的是
 
(把你认为正确结论的序号都写上).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),椭圆上一点A(-1,-
3
2
)
到其两焦点的距离之和为4.
(1)求椭圆C的标准方程.
(2)如果斜率为
1
2
的直线与椭圆交于E,F两点,试判断直线AE,AF的斜率之和是否为定值?若是,求出其定值.若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

某学生在上学路上要经过4个路口,假设在各个路口是否遇到红灯是相互独立的.第一个路口遇到红灯的概率是
1
4
,其余每个路口遇到红灯的概率都是
1
3

(Ⅰ)求这名学生在上学路上到第二个路口时首次遇到红灯的概率;
(Ⅱ)假定这名学生在第二个路口遇到红灯,求这名学生在上学路上遇到红灯的次数X的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(2x-2)=x-1(x∈[0,2]),将函数f(x)的图象向右平移2个单位,再向上平移3个单位,可得函数g(x)的图象.
(1)求函数f(x)与g(x)的解析式;
(2)若h(x)=[g(x)]2-g(x2),试求函数h(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=-
1
3
x3+x在(a,10-a2)上有最大值,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案