精英家教网 > 高中数学 > 题目详情
已知圆C经过点A(1,3)、B(2,2),并且直线l:3x-2y=0平分圆C,求圆C的方程.
分析:求出AB的中垂线方程,圆心在直线3x-2y=0,求出圆心坐标,再求出圆的半径,然后求圆C的方程;
解答:解:线段AB的中点E(
3
2
5
2
),kAB=
2-3
2-1
=-1

故线段AB中垂线的方程为y-
5
2
=x-
3
2
,即x-y+1=0
由圆C经过A、B两点,故圆心在线段AB的中垂线上
又直线3x-2y=0平分圆的面积,所以直线l经过圆心
x-y+1=0
3x-2y=0
解得 
x=2
y=3
即圆心的坐标为C(2,3),
而圆的半径r=|AC|=
(3-3)2+[2-1)2
=1

故圆C的方程为(x-2)2+(y-3)2=1.
点评:本题考查圆的标准方程,直线和圆的方程的应用,考查分析问题解决问题的能力,计算能力,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C经过点A(1,2)、B(3,0),并且直线m:2x-3y=0平分圆C.
(1)求圆C的方程;
(2)过点D(0,3),且斜率为k的直线l与圆C有两个不同的交点E、F,若|EF|≥2
3
,求k的取值范围;
(3)若圆C关于点(
3
2
,1)
对称的曲线为圆Q,设M(x1,y1)、P(x2,y2)(x1≠±x2)是圆Q上的两个动点,点M关于原点的对称点为M1,点M关于x轴的对称点为M2,如果直线PM1、PM2与y轴分别交于(0,m)和(0,n),问m•n是否为定值?若是求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C经过点A(1,3)、B(2,2),并且直线m:3x-2y=0平分圆C.
(1)求圆C的方程;
(2)若过点D(0,1),且斜率为k的直线l与圆C有两个不同的交点M、N.
(Ⅰ)求实数k的取值范围;
(Ⅱ)(文科不做)若
OM
ON
=12,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C经过点A(1,4)、B(3,-2),圆心C到直线AB的距离为
10
,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C经过点A(-1,0)和B(3,0),且圆心在直线x-y=0上.
(1)求圆C的方程;
(2)若点P(x,y)为圆C上任意一点,求点P到直线x+2y+4=0的距离的最大值和最小值.

查看答案和解析>>

同步练习册答案