精英家教网 > 高中数学 > 题目详情
(2009•台州二模)若方程lnx+3x-6=0的解为x0,则关于x不等式x≥x0的最小整数解是(  )
分析:由条件:“方程lnx+3x-6=0的解为x0”得:方程lnx=6-3x.此方程的根是两个函数y=6-3x,y=lnx图象交点的横坐标,分别画出它们的图象,由图判断知x0∈(1,2),从而得解.
解答:解:∵方程lnx-6+3x=0,
∴方程lnx=6-3x.分别画出两个函数y=6-3x,y=lnx的图象:
由图知两函数图象交点的横坐标即方程lnx-6+3x=0的解x0∈(1,2).
∴不等式x≥x0的最小整数解是2.
故选B.
点评:用函数的思想研究方程问题,关键是合理构造函数,充分利用函数的图象,体现了数形结合的思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•台州二模)已知两条不同的直线m,l与三个不同的平面α,β,γ,满足l=β∩γ,l∥α,m?α,m⊥γ,那么必有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•台州二模)下图是几何体ABC-A1B1C1的三视图和直观图.M是CC1上的动点,N,E分别是AM,A1B1的中点.
(1)求证:NE∥平面BB1C1C;
(2)当M在CC1的什么位置时,B1M与平面AA1C1C所成的角是30°.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•台州二模)一袋子中有大小、质量均相同的10个小球,其中标记“开”字的小球有5个,标记“心”字的小球有3个,标记“乐”字的小球有2个.从中任意摸出1个球确定标记后放回袋中,再从中任取1个球.不断重复以上操作,最多取3次,并规定若取出“乐”字球,则停止摸球.
求:(Ⅰ)恰好摸到2个“心”字球的概率;
(Ⅱ)摸球次数X的概率分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•台州二模)将三个分别标有A,B,C的小球随机地放入编号分别为1,2,3,4的四个盒子中,则第1号盒子内有球的不同放法的总数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•台州二模)已知向量
a
b
c
满足|
a
|=1
|
a
-
b
|=|
b
|
(
a
-
c
)
(
b
-
c
)=0
.若对每一确定的
b
|
c
|
的最大值和最小值分别为m,n,则对任意
b
,m-n的最小值是(  )

查看答案和解析>>

同步练习册答案