精英家教网 > 高中数学 > 题目详情

在△ABC中,角A,B,C所对的边分别为a,b,c,设向量数学公式=(a,数学公式),数学公式=(cosC,c-2b),且数学公式数学公式
(Ⅰ)求角A的大小;
(Ⅱ)若a=1,求△ABC的周长l的取值范围.

解:(Ⅰ)由题意.可知:
即acosC+=b,得sinAcosC+sinC=sinB.
又sinB=sin(A+C)=sinAcosB+cosAsinC.
,∵sinC≠0,∴cosA=
又0<A<π∴A=
(Ⅱ)由正弦定理得:b=
l=a+b+c=1+=1+
=1+2(
=1+2sin(B+).
∵A=
∴B∈,∴B+
∴sin(B+
故△ABC的周长l的范围为(2,3].
分析:(Ⅰ)利用向量的垂直,推出数量积为0,通过三角形内角和以及两角和的正弦函数,确定角A的大小;
(Ⅱ)若a=1,利用正弦定理求出b、c的表达式,通过三角形的内角和以及两角和的正弦函数化简表达式,根据角的范围,确定三角函数的范围,然后求△ABC的周长l的取值范围.
点评:本题考查正弦定理,两角和的正弦函数,向量的数量积等知识的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案