精英家教网 > 高中数学 > 题目详情

【题目】为增强市民的节能环保意识,汕头市面向全市征召义务宣传志愿者,从符合条件的 500 名志愿者中随机抽取 100 名,其年龄频率分布直方图如图所示,其中年龄分组区是:

(1)求图中的值,并根据频率分布直方图估计这 500 名志愿者中年龄在岁的人数;

(2)在抽出的 100 名志愿者中按年龄采用分层抽样的方法抽取 10 名参加人民广场的宣传活动,再从这 10 名志愿者中选取 3 名担任主要负责人.记这 3 名志愿者中“年龄低于 35 岁”的人数为 ,求的分布列及数学期望.

【答案】(I)150(人);(II)见解析.

【解析】试题分析:(1)先根据频率分布直方图小矩形得面积等于频率,所有小长方形面积和为1得对应概率,再根据频数等于总数与概率乘积得结果(2)先确定随机变量可能取法,再根据组合数求各自概率,列表可得分布列,最后根据数学期望公式求期望

试题解析:(I)∵小矩形得面积等于频率,∴除外得频率和为0.70,∴

500名志愿者中,年龄在岁的人数为(人)

(II)用分层抽样的方法,从中选取 10 名,则其中年龄“低于 35 岁”的人有 6 名,“年龄不低于35 岁”的人有 4 名,故的可能取值为 0,1,2,3.

, ,

, .

的分布列为

0

1

2

3

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为集合的子集,且,若,则称为集合元“大同集”.

(1)写出实数集的一个二元“大同集”;

(2)是否存在正整数集的二元“大同集”,请说明理由;

(3)求出正整数集的所有三元“大同集”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点与短轴的一个端点是等边三角形的三个顶点,且长轴长为4.

求椭圆E的方程;

A是椭圆E的左顶点,经过左焦点F的直线l与椭圆E交于CD两点,求为坐标原点的面积之差绝对值的最大值.

已知椭圆E上点处的切线方程为T为切点P是直线上任意一点,从P向椭圆E作切线,切点分别为NM,求证:直线MN恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形与梯形所在的平面相互垂直, ,点在线段上.

(1)证明:平面平面

(2)若平面,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

讨论的单调性

若在定义域内总存在使成立的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个零点.

(1)求的取值范围;

(2)是否存在实数, 对于符合题意的任意,当 时均有?

若存在,求出所有的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三角形的面积为,其中为三角形的边长,为三角形内切圆的半径,则利用类比推理,可得出四面体的体积为( )

A.

B.

C. ,(为四面体的高)

D. ,(分别为四面体的四个面的面积,为四面体内切球的半径)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上点处的切线方程为

求抛物线的方程;

为抛物线上的两个动点,其中,线段的垂直平分线轴交于点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求在点处的切线方程;

(2)当时,求函数的单调递增区间;

(3)当时,证明: (其中为自然对数的底数).

查看答案和解析>>

同步练习册答案