【题目】为增强市民的节能环保意识,汕头市面向全市征召义务宣传志愿者,从符合条件的 500 名志愿者中随机抽取 100 名,其年龄频率分布直方图如图所示,其中年龄分组区是:
,
(1)求图中的值,并根据频率分布直方图估计这 500 名志愿者中年龄在岁的人数;
(2)在抽出的 100 名志愿者中按年龄采用分层抽样的方法抽取 10 名参加人民广场的宣传活动,再从这 10 名志愿者中选取 3 名担任主要负责人.记这 3 名志愿者中“年龄低于 35 岁”的人数为 ,求的分布列及数学期望.
【答案】(I)150(人);(II)见解析.
【解析】试题分析:(1)先根据频率分布直方图小矩形得面积等于频率,所有小长方形面积和为1得对应概率,再根据频数等于总数与概率乘积得结果(2)先确定随机变量可能取法,再根据组合数求各自概率,列表可得分布列,最后根据数学期望公式求期望
试题解析:(I)∵小矩形得面积等于频率,∴除外得频率和为0.70,∴
500名志愿者中,年龄在岁的人数为(人)
(II)用分层抽样的方法,从中选取 10 名,则其中年龄“低于 35 岁”的人有 6 名,“年龄不低于35 岁”的人有 4 名,故的可能取值为 0,1,2,3.
, ,
, .
故的分布列为
0 | 1 | 2 | 3 | |
所以.
科目:高中数学 来源: 题型:
【题目】设为集合的子集,且,若,则称为集合的元“大同集”.
(1)写出实数集的一个二元“大同集”;
(2)是否存在正整数集的二元“大同集”,请说明理由;
(3)求出正整数集的所有三元“大同集”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点与短轴的一个端点是等边三角形的三个顶点,且长轴长为4.
求椭圆E的方程;
若A是椭圆E的左顶点,经过左焦点F的直线l与椭圆E交于C,D两点,求与为坐标原点的面积之差绝对值的最大值.
已知椭圆E上点处的切线方程为,T为切点若P是直线上任意一点,从P向椭圆E作切线,切点分别为N,M,求证:直线MN恒过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三角形的面积为,其中,,为三角形的边长,为三角形内切圆的半径,则利用类比推理,可得出四面体的体积为( )
A.
B.
C. ,(为四面体的高)
D. ,(,,,分别为四面体的四个面的面积,为四面体内切球的半径)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线上点处的切线方程为.
(Ⅰ)求抛物线的方程;
(Ⅱ)设和为抛物线上的两个动点,其中且,线段的垂直平分线与轴交于点,求面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com