ÖÐÐÄÔÚÔ­µãµÄË«ÇúÏßC1µÄÒ»¸ö½¹µãÓëÅ×ÎïÏßC2£ºy2=8xµÄ½¹µãFÖغϣ¬Å×ÎïÏßC2µÄ×¼ÏßlÓëË«ÇúÏßC1µÄÒ»¸ö½»µãΪA£¬ÇÒ|AF|=5£®
£¨¢ñ£©ÇóË«ÇúÏßC1µÄ·½³Ì£»
£¨¢ò£©Èô¹ýµãB£¨0£¬1£©µÄÖ±ÏßmÓëË«ÇúÏßC1ÏཻÓÚ²»Í¬Á½µãM£¬N£¬ÇÒ
.
MB
=¦Ë
.
BN
£®
¢ÙÇóÖ±ÏßmµÄбÂÊkµÄ±ä»¯·¶Î§£»
¢Úµ±Ö±ÏßmµÄбÂʲ»Îª0ʱ£¬ÎÊÔÚÖ±Ïßy=xÉÏÊÇ·ñ´æÔÚÒ»¶¨µãC£¬Ê¹
.
OB
¡Í£¨
.
CM
-¦Ë
.
CN
£©£¿Èô´æÔÚ£¬Çó³öµãCµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨¢ñ£©ÉèËùÇóË«ÇúÏß·½³ÌΪ
x2
a2
-
y2
b2
=1
£¨a£¾0£¬b£¾0£©£¬Ö±ÏßlÓëxÖá½»ÓÚF¡ä£¬¸ù¾Ý|AF|=5£¬|FF¡ä|=4£¬Äܹ»Çó³öËùÇóµÄË«ÇúÏß·½³Ì£®
£¨¢ò£©ÉèÖ±Ïßm£ºy=kx+1£¬´úÈëx2-
y2
3
=1µÃ£¬£¨3-k2£©x2-2kx-4=0£¬ÓÉÖ±ÏßmÓëÇúÏßC1½»ÓÚÁ½µãM£¬N£¬ÄÜÇó³ö-2£¼k£¼-
3
£¬»ò-
3
£¼k£¼
3
£¬»ò
3
£¼k£¼2£®ÉèM£¬NµÄ×ø±ê·Ö±ðΪ£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬µÃ
x1+x2=
-2k
k2-3
x1x2=
4
k2-3
£¬ÓÉ
MB
=¦Ë
BN
£¬µÃ£¨-x1£¬1-y1£©=¦Ë£¨x2£¬y2-1£©£¬ËùÒÔx1=-¦Ëx2£¬ÓÉ´ËÈëÊÖÄܹ»Çó³ö´æÔÚµãC£¨-3£¬-3£©£¬Âú×ãÒªÇó£®
½â´ð£º½â£º£¨¢ñ£©ÓÉÌõ¼þµÃF£¨2£¬0£©£¬l£ºx=-2£®
ÉèËùÇóË«ÇúÏß·½³ÌΪ
x2
a2
-
y2
b2
=1
£¨a£¾0£¬b£¾0£©£¬
Ö±ÏßlÓëxÖá½»ÓÚF¡ä£¬¸ù¾Ý|AF|=5£¬|FF¡ä|=4£¬
µÃ|AF¡ä|=3£¬
´Ó¶ø
c=2
b2
a
=3
£®
½âµÃa=1£¬b=
3
£®´Ó¶øËùÇóµÄË«ÇúÏß·½³ÌΪ£ºx2-
y2
3
=1£»

£¨¢ò£©¢ÙÉèÖ±Ïßm£ºy=kx+1£¬´úÈëx2-
y2
3
=1µÃ£¬
£¨3-k2£©x2-2kx-4=0£¬
¡ßÖ±ÏßmÓëÇúÏßC1½»ÓÚÁ½µãM£¬N£®
¡à
3-k2¡Ù0
(-k)2+4(3-k2)£¾0
£¬
½âµÃ-2£¼k£¼-
3
£¬»ò-
3
£¼k£¼
3
£¬»ò
3
£¼k£¼2£®
¢ÚÉèM£¬NµÄ×ø±ê·Ö±ðΪ£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬
ÓÉÉÏÃæ¿ÉµÃ
x1+x2=
-2k
k2-3
x1x2=
4
k2-3
£¬
ÓÉ
MB
=¦Ë
BN
£¬µÃ£¨-x1£¬1-y1£©=¦Ë£¨x2£¬y2-1£©£¬
¡àx1=-¦Ëx2£¬
Éè´æÔÚµãC£¨t£¬t£©£¬
Ôò
CM
-¦Ë
CN
=(x1-t£¬y1-t)-¦Ë(x2-t£¬y2-t)

=£¨x1-¦Ëx2+t£¨¦Ë-1£©£¬y1-¦Ëy2+t£¨¦Ë-1£©£©£¬
ÓÖ
OB
=(0£¬1)
£¬´Ó¶øÓÉ
OB
¡Í(
CM
-¦Ë
CN
)
£¬
µÃy1-¦Ëy2+t£¨¦Ë-1£©=0£®
ÒòÖ±ÏßmµÄбÂʲ»ÎªÁ㣬¹Ê¦Ë¡Ù1£®
ËùÒÔ½âµÃt=
y1-¦Ëy2
1-¦Ë
=
kx1+1-¦Ë(kx2+1)
1-¦Ë
=1+k?
x1-¦Ëx2
1-¦Ë
£®
ÒòΪ¦Ë=-
x1
x2
£¬´úÈëµÃt=1+k?
2x1x2
x1+x2
£¬
ÒòΪ
x1+x2=
-2k
k2-3
x1x2=
4
k2-3
£¬
´úÈëµÃt=-3£¬¼´´æÔÚµãC£¨-3£¬-3£©£¬Âú×ãÒªÇó£®
µãÆÀ£ºÍ¨¹ý¼¸ºÎÁ¿µÄת»¯¿¼²éÓôý¶¨ÏµÊý·¨ÇóÇúÏß·½³ÌµÄÄÜÁ¦£¬Í¨¹ýÖ±ÏßÓëԲ׶ÇúÏßµÄλÖùØϵ´¦Àí£¬¿¼²éѧÉúµÄÔËËãÄÜÁ¦£®Í¨¹ýÏòÁ¿Ó뼸ºÎÎÊÌâµÄ×ۺϣ¬¿¼²éѧÉú·ÖÎöת»¯ÎÊÌâµÄÄÜÁ¦£¬Ì½¾¿Ñо¿ÎÊÌâµÄÄÜÁ¦£¬²¢ÌåÏÖÁ˺ÏÀíÏûÔª£¬Éè¶ø²»½âµÄ´úÊý±äÐεÄ˼Ï룮±¾Ìâ×ÛºÏÐÔÇ¿£¬ÊǸ߿¼µÄÖص㣬Ò×´íµãÊÇ֪ʶÌåϵ²»Àι̣®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÖÐÐÄÔÚÔ­µãµÄË«ÇúÏßCµÄÓÒ½¹µãΪ£¨2£¬0£©£¬ÓÒ¶¥µãΪ£¨
3
£¬0£©
£¨1£©ÇóË«ÇúÏßCµÄ·½³Ì£»
£¨2£©ÈôÖ±Ïßl£ºy=kx+
2
ÓëË«ÇúÏßCºãÓÐÁ½¸ö²»Í¬µÄ½»µãAºÍB£¬ÇÒ
OA
OB
£¾2£¨ÆäÖÐOΪԭµã£©£®ÇókµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÖÐÐÄÔÚÔ­µãµÄË«ÇúÏßCµÄÒ»¸ö½¹µãÊÇF1£¨-3£¬0£©£¬Ò»Ìõ½¥½üÏߵķ½³ÌÊÇ
5
x-2y=0
£®
£¨¢ñ£©ÇóË«ÇúÏßCµÄ·½³Ì£»
£¨¢ò£©ÈôÒÔk£¨k¡Ù0£©ÎªÐ±ÂʵÄÖ±ÏßlÓëË«ÇúÏßCÏཻÓÚÁ½¸ö²»Í¬µÄµãM£¬N£¬ÇÒÏ߶ÎMNµÄ´¹Ö±Æ½·ÖÏßÓëÁ½×ø±êÖáΧ³ÉµÄÈý½ÇÐεÄÃæ»ýΪ
81
2
£¬ÇókµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÖÐÐÄÔÚÔ­µãµÄË«ÇúÏßCµÄÓÒ½¹µãΪ£¨2£¬0£©£¬ÓÒ¶¥µãΪ£¨
3
£¬0£©£®
£¨1£©ÇóË«ÇúÏßCµÄ·½³Ì£»
£¨2£©ÈôÖ±Ïßl£ºy=kx+1ÓëË«ÇúÏßCºãÓÐÁ½¸ö²»Í¬µÄ½»µãAºÍB£¬PÊÇÏÒABµÄÖе㣬OPµÄбÂÊΪ
2
3
£¨ÆäÖÐOΪԭµã£©£¬ÇókµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•¹ã¶«£©ÒÑÖªÖÐÐÄÔÚÔ­µãµÄË«ÇúÏßCµÄÓÒ½¹µãΪF£¨3£¬0£©£¬ÀëÐÄÂʵÈÓÚ
3
2
£¬ÔòCµÄ·½³ÌÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÖÐÐÄÔÚÔ­µãµÄË«ÇúÏßCµÄÀëÐÄÂÊΪ
2
3
3
£¬Ò»Ìõ×¼Ïß·½³ÌΪx=
3
2

£¨1£©ÇóË«ÇúÏßCµÄ±ê×¼·½³Ì
£¨2£©ÈôÖ±Ïßl£ºy=kx+
2
ÓëË«ÇúÏßCºãÓÐÁ½¸ö²»Í¬µÄ½»µãAºÍB£¬ÇÒ
OA
OB
£¾2
£¨ÆäÖÐOΪԭµã£©£¬ÇókµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸