精英家教网 > 高中数学 > 题目详情
已知椭圆C:(a>b>0),其焦距为2c,若(≈0.618),则称椭圆C为“黄金椭圆”.
(1)求证:在黄金椭圆C:(a>b>0)中,a、b、c成等比数列.
(2)黄金椭圆C:(a>b>0)的右焦点为F2(c,0),P为椭圆C上的任意一点.是否存在过点F2、P的直线l,使l与y轴的交点R满足?若存在,求直线l的斜率k;若不存在,请说明理由.
(3)在黄金椭圆中有真命题:已知黄金椭圆C:(a>b>0)的左、右焦点分别是F1(-c,0)、F2(c,0),以A(-a,0)、B(a,0)、D(0,-b)、E(0,b)为顶点的菱形ADBE的内切圆过焦点F1、F2.试写出“黄金双曲线”的定义;对于上述命题,在黄金双曲线中写出相关的真命题,并加以证明.
【答案】分析:(1)由及b2=a2-c2,求得b与ac的关系,根据等比中项的性质可推断a、b、c成等比数列.
(2)设直线l的方程为y=k(x-c),进而可表示出R的坐标根据及,进而表示出P的坐标,把P点代入椭圆的方程整理后可解得k存在,求出k.
(3)根据“黄金双曲线”的定义写出真命题.依题意可知直线EF2的方程为bx+cy-bc=0,再根据点到直线的距离化简后求得d=a,进而可知
直线EF2与圆x2+y2=a2相切,同理可证直线EF1、DF1、DF2均与圆x2+y2=a2相切,命题得证.
解答:解:(1)证明:由及b2=a2-c2,得=ac,
故a、b、c成等比数列.
(2)解:由题设,显然直线l垂直于x轴时不合题意,设直线l的方程为y=k(x-c),
得R(0,-kc),又F2(c,0),及
得点P的坐标为
因为点P在椭圆上,
所以
又b2=ac,得
故存在满足题意的直线l,其斜率
(3)在黄金双曲线中有真命题:已知黄金双曲线C:的左、右焦点分别是F1(-c,0)、F2(c,0),以F1(-c,0)、F2(c,0)、D(0,-b)、E(0,b)为顶点的菱形F1DF2E的内切圆过顶点A(-a,0)、B(a,0).
证明:直线EF2的方程为bx+cy-bc=0,原点到该直线的距离为
将b2=ac代入,得,又将代入,
化简得d=a,
故直线EF2与圆x2+y2=a2相切,
同理可证直线EF1、DF1、DF2均与圆x2+y2=a2相切,
即以A(-a,0)、B(a,0)为直径的圆x2+y2=a2为菱形F1DF2E的内切圆,命题得证.
点评:本题主要考查了椭圆的简单性质.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源:2010-2011学年福建省龙岩市高三(上)期末质量检查一级达标数学试卷(文科)(解析版) 题型:解答题

已知椭圆C: (a>b>0)的左、右焦点分别为F1(-1,0)、F2(1,0),离心率为
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知一直线l过椭圆C的右焦点F2,交椭圆于点A、B.
(ⅰ)若满足(O为坐标原点),求△AOB的面积;
(ⅱ)当直线l与两坐标轴都不垂直时,在x轴上是否总存在一点P,使得直线PA、PB的倾斜角互为补角?若存在,求出P坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2013年全国普通高等学校招生统一考试理科数学(四川卷解析版) 题型:解答题

(13分)已知椭圆C:(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点

(I)求椭圆C的离心率:

(II)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且,求点Q的轨迹方程.

 

查看答案和解析>>

科目:高中数学 来源:2014届甘肃武威六中高二12月学段检测文科数学试题(解析版) 题型:解答题

(12分)已知椭圆C:(a>b>0)的一个顶点为A(2,0),离心率为,直线y=k(x-1)与椭圆C交于不同的两点M、N.

 ①求椭圆C的方程.

 ②当⊿AMN的面积为时,求k的值.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省高三第七次月考理科数学 题型:解答题

已知椭圆C:+=1(a>b>0),直线y=x+与以原点为圆心,以椭圆C的短半轴长为半径的圆相切,F1,F2为其左、右焦点,P为椭圆C上任一点,△F1PF2的重心为G,内心为I,且IG∥F1F2。⑴求椭圆C的方程。⑵若直线L:y=kx+m(k≠0)与椭圆C交于不同两点A,B且线段AB的垂直平分线过定点C(,0)求实数k的取值范围。

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省高三上学期第三次月考数学文卷 题型:选择题

已知椭圆C:(a>b>0)的离心率为,过右焦点F且斜率为kk>0)的直线与椭圆C相交于A、B两点,若。则 (    ) 

(A)1     (B)2      (C)      (D)

 

查看答案和解析>>

同步练习册答案