精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=1﹣ (x∈R),
(1)求反函数f1(x);
(2)解不等式f1(x)>log2(1+x)+1.

【答案】
(1)解:∵函数y=f(x)=1﹣ (x∈R),

=1﹣y,

∴2x=

∴x=log2 ,且﹣1<y<1;

∴f(x)的反函数是y=f1(x)=log2 ,x∈(﹣1,1)


(2)解:不等式f1(x)>log2(1+x)+1可化为

log2 >log22(1+x),

等价于

解得 <x<1,

∴该不等式的解集为( ,1)


【解析】(1)令y=f(x),用y表示出x即可得出f(x)的反函数是y=f1(x);(2)把不等式f1(x)>log2(1+x)+1转化为log2 >log22(1+x),写出等价的不等式组,求解集即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,曲线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数).

1)写出曲线的参数方程和直线的普通方程;

2)已知点是曲线上一点,求点到直线的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线,曲线.以极点为坐标原点,极轴为轴正半轴建立平面直角坐标系,曲线的参数方程为为参数).

(1)求的直角坐标方程;

(2)交于不同的四点,这四点在上排列顺次为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列{an},{bn}满足a1=3,a2=6,{bn}是等差数列,且对任意正整数n,都有 成等比数列.
(1)求数列{bn}的通项公式;
(2)设 ,试比较2Sn 的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数区间上单调递增,求实数的取值范围;

(2)设函数 为自然对数的底数.若存在,使不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=x2﹣4px﹣2的图象过点A(tanα,1),及B(tanβ,1),求sin2(α+β).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=lg(2sinx﹣1)的定义域为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,BC边上的高所在直线的方程为x2y10A的平分线所在的直线方程为y0.若点B的坐标为(1,2),求点A和点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式kx2﹣2x+3k<0.
(1)若不等式的解集为{x|x<﹣3或x>﹣1},求k的值;
(2)若不等式的解集为,求实数k的取值范围.

查看答案和解析>>

同步练习册答案