精英家教网 > 高中数学 > 题目详情

【题目】定义在非零实数集上的函数满足,且是区间上的递增函数.

1)求的值;

2)求证:

3)解不等式

【答案】解:(1)x=y=1,则f(1)="f(1)+" f(1) ∴f(1)=0

x=y=1,则f(1)=f(1)+ f(1) ∴f(1)=0

(2)y=1,则f(x)=f(x)+f(1)="f(x) " ∴f(x)=f(x)

(3)据题意可知,函数图象大致如下:

【解析】试题分析:(1)根据,令可求得.(2)根据证明.(3)由可将变形为,由(1)可知,所以等价于.根据函数的单调性可得关于的不等式.

试题解析:解:(1)令,则

,则

2)令,则

为定义域上的偶函数.

3)据题意可知,函数图象大致如下:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于给定的正整数k,若数列{an}满足:an﹣k+an﹣k+1+…+an﹣1+an+1+…an+k﹣1+an+k=2kan对任意正整数n(n>k)总成立,则称数列{an}是“P(k)数列”.
(Ⅰ)证明:等差数列{an}是“P(3)数列”;
(Ⅱ)若数列{an}既是“P(2)数列”,又是“P(3)数列”,证明:{an}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,讨论的单调性;

(2)设时,若对任意,存在使,求实数取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图多面体 两两垂直

.

() 若点在线段求证: 平面

()求直线与平面所成的角的正弦值

()求锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.
(Ⅰ)求a;
(Ⅱ)证明:f(x)存在唯一的极大值点x0 , 且e﹣2<f(x0)<2﹣2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数y= 的定义域为A,函数y=ln(1﹣x)的定义域为B,则A∩B=(  )
A.(1,2)
B.(1,2]
C.(﹣2,1)
D.[﹣2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣2x+ex ,其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正△ABC内接于半径为2的圆O,点P是圆O上的一个动点,则 的取值范围是(
A.[0,6]
B.[﹣2,6]
C.[0,2]
D.[﹣2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2x+alnx(a>0).
(Ⅰ)当a=2时,试求函数图线过点(1,f(1))的切线方程;
(Ⅱ)当a=1时,若关于x的方程f(x)=x+b有唯一实数解,试求实数b的取值范围;
(Ⅲ)若函数f(x)有两个极值点x1、x2(x1<x2),且不等式f(x1)≥mx2恒成立,试求实数m的取值范围.

查看答案和解析>>

同步练习册答案