精英家教网 > 高中数学 > 题目详情
12.直线2x+ay=2与ax+(a+4)y=1垂直,则a的值为0或-6.

分析 根据两直线垂直时,一次项对应系数之积的和等于0,求得a的值.

解答 解:∵直线2x+ay=2与ax+(a+4)y=1垂直,
∴2a+a(a+4)=0,解得a=0或-6,
故答案为0或-6.

点评 本题主要考查两直线垂直的性质,两直线垂直时,一次项对应系数之积的和等于0,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.如图,E为正四棱锥P-ABCD侧棱PD上异于P,D的一点,给出下列结论:
①侧面PBC可以是正三角形;
②侧面PBC可以是直角三角形;
③侧面PAB上存在直线与CE平行;
④侧面PAB上存在直线与CE垂直.
其中,所有正确结论的序号是(  )
A.①②③B.①③④C.②④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知x和y是实数,i是虚数单位,(1+i)x+yi=(1+3i)i,则|x+yi|等于(  )
A.$\sqrt{5}$B.5C.$\sqrt{11}$D.$\sqrt{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\vec a$与$\overrightarrow b$的夹角为$\frac{2π}{3}$,$|{\overrightarrow a}|=2$,|$\overrightarrow{b}$|=3,记$\vec m=3\vec a-2\vec b$,$\vec n=2\vec a+k\vec b$
(I) 若$\vec m⊥\vec n$,求实数k的值;
(II) 当$k=-\frac{4}{3}$时,求向量$\vec m$与$\vec n$的夹角θ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.一块石材表示的几何体的三视图如图所示,则它的体积等于(  )
A.96B.192C.288D.576

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在四棱锥P-ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=$\sqrt{3}$,BC=PA=1,E为PD的中点,点N在面PAC内,且NE⊥平面PAC,则点N到AB的距离为$\frac{\sqrt{10-4\sqrt{3}}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设x,y满足约束条件$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,则x2+y2的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在正三棱锥P-ABC中,D、E分别为AB、BC的中点,有下列三个论断:①面APC⊥面PBD;②AC∥面PDE;③AB⊥面PDC,其中正确论断的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=e|lnx|,则函数y=f(x+1)的大致图象为(  )
A.B.C.D. 

查看答案和解析>>

同步练习册答案