精英家教网 > 高中数学 > 题目详情
F为抛物线Cy2=4x的焦点,过点P(-1,0)的直线l交抛物线CAB两点,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于________.
±1
设直线l的方程为yk(x+1),A(x1y1)、B(x2y2)、Q(x0y0).
解方程组.化简得:k2x2+(2k2-4)xk2=0,∴x1x2
y1y2k(x1x2+2)=,∴x0y0
=2得:22=4.
k=±1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知动圆过定点(1,0),且与直线相切.
(1)求动圆圆心的轨迹方程;
(2)设是轨迹上异于原点的两个不同点,直线的倾斜角分别为,①当时,求证直线恒过一定点
②若为定值,直线是否仍恒过一定点,若存在,试求出定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定点和定直线,动点与定点的距离等于点到定直线的距离,记动点的轨迹为曲线.
(1)求曲线的方程.
(2)若以为圆心的圆与曲线交于不同两点,且线段是此圆的直径时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若抛物线y2=2px的焦点坐标为(1,0),则p=    ;准线方程为    

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线l1:4x-3y+6=0和直线l2x=- (p>2).若拋物线Cy2=2px上的点到直线l1和直线l2的距离之和的最小值为2.
(1)求抛物线C的方程;
(2)若拋物线上任意一点M处的切线l与直线l2交于点N,试问在x轴上是否存在定点Q,使Q点在以MN为直径的圆上,若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线y2=2px焦点F作直线l交抛物线于AB两点,O为坐标原点,则△ABO为(  ).
A.锐角三角形B.直角三角形
C.不确定D.钝角三角形

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点P在抛物线上运动,F为抛物线的焦点,点M的坐标为(3,2),当PM+PF取最小值时点P的坐标为      

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线l过抛物线C的焦点,且与C的对称轴垂直,lC交于AB两点,|AB|=12,PC的准线上一点,则△ABP的面积为(  ).
A.18 B.24C.36D.48

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是抛物线 的焦点,是这条抛物线上的三点,且成等差数列.则的值是(  )
A.6B.3
C.0D.不能确定,与的值有关

查看答案和解析>>

同步练习册答案