精英家教网 > 高中数学 > 题目详情

【题目】已知正数数列的前项和为,且满足;在数列中,

(1)求数列的通项公式;

(2)设,数列的前项和为. 若对任意,存在实数,使恒成立,求的最小值.

【答案】(1);(2)

【解析】分析:(1)时,得,当化简可得为等差数列,故而可得的通项公式,对于可构造为首项,公比为3的等比数列故而可求的通项公式;(2)由错位相减法可求出根据的单调性可求出的值,即可得结果.

详解(1)对:当时,

时,由 相减得:

,∴

为首项,公差为1的等差数列

:由题

为首项,公比为3的等比数列

(2)由题知

……………………①

……………………②

①—② 得:

易知:递增,∴

由题知:

的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个顶点为A(0,-1),焦点在x轴上。若右焦点F到直线xy+2=0的距离为3。

(1)求椭圆的方程;

(2)设直线ykxm(k≠0)与椭圆相交于不同的两点MN。当|AM|=|AN|时,求m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线,则下面结论正确的是( )

A. 上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线

B. 上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线

C. 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线

D. 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,设

1)求

2)判断数列是否为等比数列,并说明理由;

3)求的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,数列满足 .

(Ⅰ)当时,求证:数列为等差数列并求

(Ⅱ)证明:对于一切正整数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数f(x)4sin(2x), (x∈R)有下列命题:

①yf(x)是以为最小正周期的周期函数;

② yf(x)可改写为y4cos(2x)

③yf(x)的图象关于(0)对称;

④ yf(x)的图象关于直线x=-对称;

其中正确的序号为 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】盒子里放有外形相同且编号为1,2,3,4,5的五个小球,其中1号与2号是黑球,3号、4号与5号是红球,从中有放回地每次取出1个球,共取两次.

(1)求取到的2个球中恰好有1个是黑球的概率;

(2)求取到的2个球中至少有1个是红球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一条光线经过P(2,3),射在直线l:xy10,反射后穿过点Q(1,1).

(1)求入射光线的方程;

(2)求这条光线从PQ的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知具有相关关系的两个变量之间的几组数据如下表所示:

(1)请根据上表数据在网格纸中绘制散点图;

(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程,并估计当时, 的值;

(3)将表格中的数据看作五个点的坐标,则从这五个点中随机抽取2个点,求这两个点都在直线的右下方的概率.

查看答案和解析>>

同步练习册答案