精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆和圆为椭圆的左、右焦点,点在椭圆上,当直线与圆相切时,

I)求的方程;

)直线与椭圆和圆都相切,切点分别为,求面积的最大值.

【答案】;(.

【解析】

I)根据已知条件求得的值,由此可得出椭圆的方程;

)将直线的方程与椭圆的方程联立,由可得出,并求出点的坐标,根据圆的切线的性质可得出直线的方程为,与直线的方程联立可求得点的坐标,求得直线轴的交点的坐标,利用三角形的面积公式以及基本不等式可求得面积的最大值.

)由题可知.①

,则由与圆相切时,得,即.②

将①②代入,解得,所以椭圆的方程为

)设点

代入

由直线与椭圆相切得,即,且

由直线与圆相切,设,与联立得

设直线轴交于点,则

所以的面积为

当且仅当时等号成立,

所以的面积的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2016年春节期间全国流行在微信群里发抢红包,现假设某人将688元发成手气红包50个,产生的手气红包频数分布表如下:

金额分组

3

9

17

11

8

2

1)求产生的手气红包的金额不小于9元的频率;

2)估计手气红包金额的平均数(同一组中的数据用该组区间的中点值作代表)

3)在这50个红包组成的样本中,将频率视为概率.

①若红包金额在区间内为最佳运气手,求抢得红包的某人恰好是最佳运气手的概率;

②随机抽取手气红包金额在内的两名幸运者,设其手气金额分别为,求事件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为正方形,PACEAB=CEPAPA⊥平面ABCD.

1)证明:PE⊥平面DBE

2)求二面角BPDE的正弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)试比较的大小.

2)若函数的两个零点分别为

①求的取值范围;

②证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对数是简化繁杂运算的产物.16世纪时,为了简化数值计算,数学家希望将乘除法归结为简单的加减法.当时已经有数学家发现这在某些情况下是可以实现的.

比如,利用以下2的次幂的对应表可以方便地算出的值.

4

5

6

7

8

9

10

11

12

16

32

64

128

256

512

1024

2048

4096

首先,在第二行找到16256;然后找出它们在第一行对应的数,即48,并求它们的和,即12;最后在第一行中找到12,读出其对应的第二行中的数4096,这就是的值.

用类似的方法可以算出的值,首先,在第二行找到4096128;然后找出它们在第一行对应的数,即127,并求它们的______;最后在第一行中找到______,读出其对应的第二行中的数______,这就是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数的图象在点处的切线平行于轴,求函数上的最小值;

2)若关于的方程上有两个解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是坐标原点,椭圆的左右焦点分别为,点在椭圆上,若的面积最大时且最大面积为.

1)求椭圆的标准方程;

2)直线与椭圆在第一象限交于点,点是第四象限内的点且在椭圆上,线段被直线垂直平分,直线与椭圆交于另一点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位同学参加某个知识答题游戏节目,答题分两轮,第一轮为“选题答题环节”第二轮为“轮流坐庄答题环节”.首先进行第一轮“选题答题环节”,答题规则是:每位同学各自从备选的5道不同题中随机抽出3道题进行答题,答对一题加10分,答错一题(不答视为答错)减5分,已知甲能答对备选5道题中的每道题的概率都是,乙恰能答对备选5道题中的其中3道题;第一轮答题完毕后进行第二轮“轮流坐庄答题环节”,答题规则是:先确定一人坐庄答题,若答对,继续答下一题…,直到答错,则换人(换庄)答下一题…以此类推.例如若甲首先坐庄,则他答第1题,若答对继续答第2题,如果第2题也答对,继续答第3题,直到他答错则换成乙坐庄开始答下一题,…直到乙答错再换成甲坐庄答题,依次类推两人共计答完20道题游戏结束,假设由第一轮答题得分期望高的同学在第二轮环节中最先开始作答,且记第道题也由该同学(最先答题的同学)作答的概率为),其中,已知供甲乙回答的20道题中,甲,乙两人答对其中每道题的概率都是,如果某位同学有机会答第道题且回答正确则该同学加10分,答错(不答视为答错)则减5分,甲乙答题相互独立;两轮答题完毕总得分高者胜出.回答下列问题

1)请预测第二轮最先开始作答的是谁?并说明理由

2)①求第二轮答题中

②求证为等比数列,并求)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校实行新课程改革,即除语、数、外三科为必考科目外,还要在理、化、生、史、地、政六科中选择三科作为选考科目.已知某生的高考志愿为某大学环境科学专业,按照该大学上一年高考招生选考科目要求理、化必选,为该生安排课表(上午四节、下午四节,每门课每天至少一节),已知该生某天最后两节为自习课,且数学不排下午第一节,语文、外语不相邻(上午第四节和下午第一节不算相邻),则该生该天课表有( .

A.444B.1776C.1440D.1560

查看答案和解析>>

同步练习册答案