精英家教网 > 高中数学 > 题目详情
17.设函数f(x)=$\left\{\begin{array}{l}{{2}^{|x-1|}-1,x≥0}\\{{x}^{2}+2x+1,x<0}\end{array}\right.$,若f2(x)-(3a-1)f(x)+a2=0有5个不同的实数解,则a=2.

分析 令t=f(x),方程f2(x)-(3a-1)f(x)+a2=0可化为t2-(3a-1)t+a2=0,画出函数f(x)=$\left\{\begin{array}{l}{{2}^{|x-1|}-1,x≥0}\\{{x}^{2}+2x+1,x<0}\end{array}\right.$的图象,数形结合,可得方程t2-(3a-1)t+a2=0有两个根,其中一个为1,一个为0或大于1的数,进而可得答案.

解答 解:函数f(x)=$\left\{\begin{array}{l}{{2}^{|x-1|}-1,x≥0}\\{{x}^{2}+2x+1,x<0}\end{array}\right.$的图象如图所示:
令t=f(x),则方程f2(x)-(3a-1)f(x)+a2=0可化为t2-(3a-1)t+a2=0,
若方程f2(x)-(3a-1)f(x)+a2=0有5个不同的实数解,
则方程t2-(3a-1)t+a2=0有两个根,其中一个为1,一个为0或大于1的数,
将t=1代入得:1-(3a-1)+a2=0,
解得:a=1,或a=2,
当a=1时,方程t2-(3a-1)t+a2=0可化为:方程t2-2t+1=0,此时方程只有一个根1,不满足条件;
当a=2时,方程t2-(3a-1)t+a2=0可化为:方程t2-5t+4=0,此时方程一个根为1,一个根为4,满足条件;
综上所述:a=2,
故答案为:2

点评 本题考查的知识点是分段函数的应用,方程的根与函数零点的关系,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知中心在坐标原点的椭圆E的长轴的一个端点是抛物线y2=4$\sqrt{5}$x的焦点,且椭圆E的离心率是$\frac{\sqrt{5}}{5}$
(1)求椭圆E的方程;
(2)过点C(-1,0)的动直线与椭圆E相交于A,B两点.若线段AB的中点的横坐标是-$\frac{1}{2}$,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若x,y满足约束条件$\left\{\begin{array}{l}{x+1≤0}\\{x-y≤0}\\{x+y≤0}\end{array}\right.$,则$\frac{y-1}{x}$的最大值为(  )
A.2B.$\frac{1}{2}$C.3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=-$\frac{1}{3}$x3+$\frac{1}{2}$x2+2x取极小值时,x的值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设定义在(0,+∞)上的函数f(x)满足x2f′(x)+2xf(x)=1+lnx,f(1)=0,若关于x的方程f(x)=a有两个不等实数根,则实数a的取值范围为(0,$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知椭圆:$\frac{x^2}{9}+\frac{y^2}{4}=1$,左右焦点分别为F1,F2,过F1的直线l交椭圆于A,B 两点,则|$\overrightarrow{B{F}_{2}}$|+|$\overrightarrow{A{F}_{2}}$|的最大值为$\frac{28}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.计算:
(1)$\frac{1}{\sqrt{0.04}}$+($\frac{1}{\sqrt{27}}$)${\;}^{\frac{1}{3}}$+($\sqrt{2}$+1)-1-2${\;}^{\frac{1}{2}}$+(-2)0
(2)$\frac{2}{5}$lg32+lg50+$\sqrt{(lg3)^{2}-lg9+1}$-lg$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某基建公司年初以100万元购进一辆挖掘机,以每年22万元的价格出租给工程队.基建公司负责挖掘机的维护,第一年维护费为2万元,随着机器磨损,以后每年的维护费比上一年多2万元,同时该机器第x(x∈N*,x≤16)年末可以以(80-5x)万元的价格出售.
(1)写出基建公司到第x年末所得总利润y(万元)关于x(年)的函数解析式,并求其最大值;
(2)为使经济效益最大化,即年平均利润最大,基建公司应在第几年末出售挖掘机?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四面体ABCD中,△ABD,△ACD,△DBC和△ABC全等,且AB=AC=$\sqrt{3}$,BC=2;求证:平面BCD⊥平面ABC.

查看答案和解析>>

同步练习册答案