(本小题满分12分)
如图所示,平面PAD⊥平面ABCD,ABCD为正方形,PA⊥AD,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点。
(1)求证:BC//平面EFG;
(2)求三棱锥E—AFG的体积。
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知四棱锥的底面是矩形,侧棱长相等,棱锥的高为4,其俯视图如图所示.
(1)作出此四棱锥的主视图和侧视图,并在图中标出相关的数据;
(2)求该四棱锥的侧面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题12分)
如图1所示,在平行六面体ABCD—A1B1C1D1中,已知AB=5,AD=4,AA1=3,AB⊥AD,∠A1AB=∠A1AD=。(1)求证:顶点A1在底面ABCD上的射影O在∠BAD的平分线上;
(2)求这个平行六面体的体积。
图1
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,FD垂直于矩形ABCD所在平面,CE//DF, ∠DEF=900。
(1)求证:BE//平面ADF;
(2)若矩形ABCD的一个边AB="3," 另一边BC=2,EF=2,求几何体ABCDEF的体积。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题共13分)
如图,在四棱锥P—ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,∠ABC=
∠BAD=90°,为AB中点,F为PC中点.
(I)求证:PE⊥BC;
(II)求二面角C—PE—A的余弦值;
(III)若四棱锥P—ABCD的体积为4,求AF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com