【题目】已知圆与直线相交于、两点,为原点,若.
(1)求实数的值;
(2)求的面积.
科目:高中数学 来源: 题型:
【题目】设函数.
(1)若,,求函数的极值;
(2)若是函数的一个极值点,试求出关于的关系式(即用表示),并确定的单调区间;(提示:应注意对的取值范围进行讨论)
(3)在(2)的条件下,设,函数,若存在使得成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是梯形,,,是正三角形,为的中点,平面平面.
(1)求证:平面;
(2)在棱上是否存在点,使得二面角的余弦值为?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,a1=﹣1,b1=1,a2+b2=2.
(1)若a3+b3=5,求{bn}的通项公式;
(2)若T3=21,求S3.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切.
(1)求椭圆的方程;
(2)设,,是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,证明:直线与轴相交于定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆:的左右焦点分别为,,上顶点为.
(Ⅰ)若.
(i)求椭圆的离心率;
(ii)设直线与椭圆的另一个交点为,若的面积为,求椭圆的标准方程;
(Ⅱ)由椭圆上不同三点构成的三角形称为椭圆的内接三角形,当时,若以为直角顶点的椭圆的内接等腰直角三角形恰有3个,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com