精英家教网 > 高中数学 > 题目详情
过点A(0,2)可以作 ______条直线与双曲线x2-
y2
4
=1
有且只有一个公共点.
如图所示:有两条切线和两条与渐近线平行的直线
一共有4条直线.
故答案为:4
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

过点P(1,1)作直线与双曲线x2-
y2
2
=1
交于A、B两点,使点P为AB中点,则这样的直线(  )
A.存在一条,且方程为2x-y-1=0
B.存在无数条
C.存在两条,方程为2x±(y+1)=0
D.不存在

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线C:x2-
y2
2
=1
,过点P(-1,-2)的直线交C于A,B两点,且点P为线段AB的中点.
(1)求直线AB的方程;
(2)求弦长|AB|的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点M(
3
,0),椭圆
x2
4
+y2=1与直线y=k(x+
3
)交于点A、B,则△ABM的周长为(  )
A.4B.8C.12D.16

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,线段MN的两个端点M、N分别在x轴、y轴上滑动,|MN|=5,点P是线段MN上一点,且
MP
=
2
3
PN
,点P随线段MN的运动而变化.
(1)求点P的轨迹C的方程;
(2)过点(2,0)作直线l,与曲线C交于A、B两点,O是坐标原点,设
OS
=
OA
+
OB
,是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直线y=x-2上是否存在点P,使得经过点P能作出抛物线y=
1
2
x2
的两条互相垂直的切线?若存在,求点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点(1,
q
2
)
,且离心率e=
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M、N,且线段MN的垂直平分线过定点G(
1
8
,0)
,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(A题)如图,在椭圆
x2
a2
+
y2
8
=1(a>0)中,F1,F2分别是椭圆的左右焦点,B,D分别为椭圆的左右顶点,A为椭圆在第一象限内弧上的任意一点,直线AF1交y轴于点E,且点F1,F2三等分线段BD.
(1)若四边形EBCF2为平行四边形,求点C的坐标;
(2)设m=
S△AF1O
S△AEO
,n=
S△CF1O
S△CEO
,求m+n的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左右顶点分别为A,B,点P在椭圆上且异于A,B两点,O为坐标原点.
(1)若直线AP与BP的斜率之积为-
1
2
,求椭圆的离心率;
(2)若|AP|=|OA|,证明直线OP的斜率k满足|k|>
3

查看答案和解析>>

同步练习册答案