精英家教网 > 高中数学 > 题目详情
(2013•北京)如图,在正方体ABCD-A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有(  )
分析:建立如图所示的空间直角坐标系,不妨设正方体的棱长|AB|=3,即可得到各顶点的坐标,利用两点间的距离公式即可得出.
解答:解:建立如图所示的空间直角坐标系,不妨设正方体的棱长|AB|=3,
则A(3,0,0),B(3,3,0),C(0,3,0),D(0,0,0),A1(3,0,3),B1(3,3,3),C1(0,3,3),D1(0,0,3),
BD1
=(-3,-3,3),设P(x,y,z),∵
BP
=
1
3
BD1
=(-1,-1,1),∴
DP
=
DB
+(-1,-1,1)
=(2,2,1).
∴|PA|=|PC|=|PB1|=
12+22+12
=
6

|PD|=|PA1|=|PC1|=
22+22+12
=3

|PB|=
3

|PD1|=
22+22+22
=2
3

故P到各顶点的距离的不同取值有
6
,3,
3
2
3
共4个.
故选B.
点评:熟练掌握通过建立空间直角坐标系及两点间的距离公式是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•北京)如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为
2
5
5
2
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•北京)如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:
(Ⅰ)PA⊥底面ABCD;
(Ⅱ)BE∥平面PAD;
(Ⅲ)平面BEF⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•北京)如图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月15日中的某一天到达该市,并停留2天.

(Ⅰ)求此人到达当日空气重度污染的概率;
(Ⅱ)设x是此人停留期间空气质量优良的天数,求X的分布列与数学期望;
(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•北京)如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求证二面角A1-BC1-B1的余弦值;
(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求
BDBC1
的值.

查看答案和解析>>

同步练习册答案