精英家教网 > 高中数学 > 题目详情

【题目】如图动点P从单位正方形ABCD顶点A开始顺次经B、C、D绕边界一周,当 表示点P的行程, 表示PA之长时,求y关于x的解析式,并求 的值.

【答案】见解析

【解析】试题分析:根据题意及图形知y关于x的解析式要分段来求,由图形知可分为PABBCCDDA上运动四段求函数的解析,再将代入相应的函数解析式,可求的值

试题解析:当PAB上运动时,

PBC上运动时,

PCD上运动时,

PDA上运动时,

点晴:对函数应用问题的考查,常与二次函数、基本不等式及导数等知识交汇,以解答题为主要形式出现.对一次函数、二次函数模型的考查主要有以下两个命题角度:(1)单一考查一次函数或二次函数模型的建立及最值问题;(2)以分段函数的形式考查一次函数和二次函数.应用问题首要问题是阅读问题,将实际问题转化为函数问题来求最优解

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点A(m1,2)B(1,1)C(3m2m1)

(1)ABC三点共线,求实数m的值;

(2)ABBC,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当设集合求集合

(2)在(1)的条件下,若且满足求实数的取值范围

(3)若对任意的存在使不等式恒成立求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】( 本小题满分14)

如图,在三棱锥PABC中,PC底面ABCABBCDE分别是ABPB的中点.

(1)求证:DE平面PAC

(2)求证:ABPB

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an},{bn}的通项公式分别是an=(﹣1)n+2016a,bn=2+ ,若an<bn , 对任意n∈N+恒成立,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 直径, 所在的平面, 是圆周上不同于的动点.

(1)证明:平面平面

(2)若,且当二面角的正切值为时,求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的定义域和值域;

(2)设为实数),求时的最大值

(3)对(2)中,若所有的实数恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知是上、下底边长分别为26,高为的等腰梯形,将它沿对称轴折叠,使二面角为直二面角.

1)证明:

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系内,已知是圆上一点,折叠该圆两次使点分别与圆上不相同的两点(异于点)重合,两次的折痕方程分别为,若圆上存在点,使,其中的坐标分别为,则实数的取值集合为__________

查看答案和解析>>

同步练习册答案