【题目】如图,动点P从单位正方形ABCD顶点A开始,顺次经B、C、D绕边界一周,当 表示点P的行程, 表示PA之长时,求y关于x的解析式,并求 的值.
【答案】见解析
【解析】试题分析:根据题意及图形知y关于x的解析式要分段来求,由图形知可分为P在AB、BC、CD、DA上运动四段求函数的解析,再将代入相应的函数解析式,可求的值
试题解析:当P在AB上运动时, ;
当P在BC上运动时,
当P在CD上运动时,
当P在DA上运动时,
∴
∴
点晴:对函数应用问题的考查,常与二次函数、基本不等式及导数等知识交汇,以解答题为主要形式出现.对一次函数、二次函数模型的考查主要有以下两个命题角度:(1)单一考查一次函数或二次函数模型的建立及最值问题;(2)以分段函数的形式考查一次函数和二次函数.应用问题首要问题是阅读问题,将实际问题转化为函数问题来求最优解
科目:高中数学 来源: 题型:
【题目】已知函数, 且.
(1)当时,设集合,求集合;
(2)在(1)的条件下,若,且满足,求实数的取值范围;
(3)若对任意的,存在,使不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】( 本小题满分14)
如图,在三棱锥P—ABC中,PC⊥底面ABC,AB⊥BC,D,E分别是AB,PB的中点.
(1)求证:DE∥平面PAC
(2)求证:AB⊥PB
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an},{bn}的通项公式分别是an=(﹣1)n+2016a,bn=2+ ,若an<bn , 对任意n∈N+恒成立,则实数a的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图, 是直径, 所在的平面, 是圆周上不同于的动点.
(1)证明:平面平面;
(2)若,且当二面角的正切值为时,求直线与平面所成的角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系内,已知是圆上一点,折叠该圆两次使点分别与圆上不相同的两点(异于点)重合,两次的折痕方程分别为和,若圆上存在点,使,其中的坐标分别为,则实数的取值集合为__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com