精英家教网 > 高中数学 > 题目详情
17.已知x>0时,f(x)=x-2013,且知f(x)在定义域上是奇函数,则当x<0时,f(x)的解析式是(  )
A.f(x)=x+2013B.f(x)=-x+2013C.f(x)=-x-2013D.f(x)=x-2013

分析 先将x<0转化为-x>0,再利用已知解析式和奇偶性来求解.

解答 解:当x<0时,-x>0,
因为x>0时,f(x)=x-2013,
所以f(-x)=-x-2013,
因为函数是奇函数,
所以f(-x)=-x-2013=-f(x),
所以f(x)=x+2013,
故选:A.

点评 本题考察利用函数奇偶性求函数解析式,属基础题,解题时应该注意地方为:从所求入手,易错为从x>0开始.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.直线4x+2y=1的斜率为(  )
A.-3B.3C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.复数z满足z(1+i)=2i(i为虚数单位),则z的虚部为(  )
A.1B.-1C.-iD.i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=loga(1+x)+loga(3-x)(a>0且a≠1),其中f(1)=2.
(1)求a的值以及f(x)的定义域;
(2)求f(x)在区间[0,$\frac{3}{2}$]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆过点A(2,-$\frac{4\sqrt{5}}{3}$)、B(-1,$\frac{8\sqrt{2}}{3}$)求椭圆的标准方程,顶点坐标,焦点坐标及离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线C:y2=2px(p>0)的焦点为F,点D(2,y0)在抛物线C上,且|DF|=3,直线y=x-1与抛物线C交于A,B两点,O为坐标原点.
(1)求抛物线C的方程;
(2)求△OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,圆O与x轴的正半轴的交点为A,点C、B在圆O上,且点C位于第一象限,点B的坐标为($\frac{4}{5}$,-$\frac{3}{5}$),∠AOC=α,若|BC|=1,则$\sqrt{3}$cos2$\frac{α}{2}$-sin$\frac{α}{2}$cos$\frac{α}{2}$-$\frac{\sqrt{3}}{2}$的值为(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.-$\frac{4}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数 f (x)=x2ln x,若关于x的不等式 f (x)-kx+1≥0恒成立,则实数k 的取值范围是(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在区间[-3,3]中随机取一个实数k,则事件“直线y=kx与圆(x-2)2+y2=1相交”发生的概率为(  )
A.$\frac{\sqrt{3}}{9}$B.$\frac{\sqrt{3}}{6}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案