精英家教网 > 高中数学 > 题目详情

【题目】已知是首项为19公差为-2的等差数列的前项和

1求通项

2是首项为1公比为3的等比数列求数列的通项公式及其前项和

【答案】12

【解析】

试题分析:1本问考查等差数列通项公式、前n项和公式属于对基本公式的考查可以根据已知条件的首项及公差求出该等差数列的通项公式及前n项和公式要求解题时公式要使用准确计算准确.(2根据数列是首项为1公比为3的等比数列可以求出数列的通项公式然后整理出的表达式观察的结构恰好为等比数列与等差数列的和从而采用分组求和求出数列的前n项和本题充分考查等差数列及等比数列的通项公式求法以及数列求和中的分组求和法考查学生对数列基本公式和求和基本方法的掌握

试题解析:1因为是首项为公差的等差数列

所以

2由题意所以

=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.

已知从全部105人中随机抽取1人为优秀的概率为.

(1)请完成上面的列联表:若按的可靠性要求,根据列联表的数据,能否认为“成绩与班级有关系”;

(2)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到10号的概率.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方体的棱长为1, 分别是棱的中点,过直线的平面分别与棱交于,设, ,给出以下四个命题:

②当且仅当时,四边形的面积最小;

③四边形周长, ,则是奇函数;

④四棱锥的体积为常函数;

其中正确命题的个数为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某出租车公司响应国家节能减排的号召,已陆续购买了140辆纯电动汽车作为运营车辆,目前我国主流纯电动汽车按续航里程数单位:公里分为3类,即类:类: 类:,该公司对这140辆车的行驶总里程进行统计,结果如下表:

类型

已行驶总里程不超过10万公里的车辆数

10

40

30

已行驶总里程超过10万公里的车辆数

20

20

20

(1)从这140辆汽车中任取一辆,求该车行驶总里程超过10万公里的概率;

(2)公司为了了解这些车的工作状况,决定抽取了14辆车进行车况分析,按表中描述的六种情况进行分层抽样,设从类车中抽取了辆车.

的值;

如果从这辆车中随机选取两辆车,求恰有一辆车行驶总里程超过10万公里的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将五个1,五个2,五个3,五个4,五个5共25个数填入一个5行5列的表格内(每格填入一个数),使得同一行中任何两数之差的绝对值不超过2,考查每行中五个数之和,记这五个和的最小值为,则的最大值为( )

A. B. 9 C. 10 D. 11

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若要得到函数y=sin(2x﹣ )的图象,可以把函数y=sin2x的图象(
A.向右平移 个单位
B.向左平移 个单位
C.向右平移 个单位
D.向左平移 个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列具有性质:对任意 两数至少有一个属于

Ⅰ)分别判断数集是否具有性质,并说明理由.

Ⅱ)求证:

Ⅲ)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(2cosωx,cos2ωx), =(sinωx,1)(其中ω>0),令f(x)= ,且f(x)的最小正周期为π.
(1)求 的值;
(2)写出 上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公比为负值的等比数列{an}中,a1a5=4,a4=﹣1.
(1)求数列{an}的通项公式;
(2)设bn= + +…+ ,求数列{an+bn}的前n项和Sn

查看答案和解析>>

同步练习册答案