精英家教网 > 高中数学 > 题目详情

已知函数f(x)= (a>0,x>0).

(1)求证:f(x)在(0,+∞)上是增函数;

(2)若f(x)≤2x在(0,+∞)上恒成立,求a的取值范围;

(3)若f(x)在[m,n]上的值域是[m,n](mn),求a的取值范围.

(1)证明略 (2) a的取值范围是[,+∞)(3)0<a


解析:

  任取x1x2>0,

f(x1)–f(x2)=

x1x2>0,∴x1x2>0,x1x2>0,

f(x1)–f(x2)>0,即f(x1)>f(x2),故f(x)在(0,+∞)上是增函数.

(2)解: ∵≤2x在(0,+∞)上恒成立,且a>0,

a在(0,+∞)上恒成立,

(当且仅当2x=x=时取等号),

要使a在(0,+∞)上恒成立,则a.

a的取值范围是[,+∞).

(3)解: 由(1)f(x)在定义域上是增函数.

m=f(m),n=f(n),即m2m+1=0,n2n+1=0

故方程x2x+1=0有两个不相等的正根mn,注意到m·n=1,

故只需要Δ=()2–4>0,由于a>0,则0<a.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案