A. | (-e2,+∞) | B. | (-e2,0) | C. | (-e-2,+∞) | D. | (-e-2,0) |
分析 由曲线y=f(x)上存在不同的两点,使得曲线在这两点处的切线都与y轴垂直,故f′(x)=a+(x-1)e-x=0有两个不同的解,即得a=(1-x)e-x有两个不同的解,即可解出a的取值范围.
解答 解:∵曲线y=f(x)上存在不同的两点,使得曲线在这两点处的切线都与y轴垂直,
∴f′(x)=a+(x-1)e-x=0有两个不同的解,即得a=(1-x)e-x有两个不同的解,
设y=(1-x)e-x,则y′=(x-2)e-x,∴x<2,y′<0,x>2,y′>0
∴x=2时,函数取得极小值-e-2,
∴0>a>-e-2.
故选D.
点评 本题主要考查了利用导数研究曲线上某点切线方程,函数零点等有关基础知识,考查运算求解能力、推理论证能力,考查化归与转化思想.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
月份 | 1月份 | 2月份 | 3月份 | 4月份 |
收购价格(元/斤) | 6 | 7 | 6 | 5 |
养殖成本(元/斤) | 3 | 4 | 4.6 | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | x-y+1=0 | B. | $\sqrt{2}$x-2y-$\sqrt{2}$-2=0 | C. | x-y-3=0 | D. | $\sqrt{2}$x-2y+$\sqrt{2}$+1=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com